|
import math |
|
import struct |
|
import inspect |
|
from .LMConfig import LMConfig |
|
from typing import Any, Optional, Tuple |
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
from transformers import PreTrainedModel |
|
from transformers.modeling_outputs import CausalLMOutputWithPast |
|
|
|
|
|
class RMSNorm(torch.nn.Module): |
|
def __init__(self, dim: int, eps: float): |
|
super().__init__() |
|
self.eps = eps |
|
self.weight = nn.Parameter(torch.ones(dim)) |
|
|
|
def _norm(self, x): |
|
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) |
|
|
|
def forward(self, x): |
|
output = self._norm(x.float()).type_as(x) |
|
return output * self.weight |
|
|
|
|
|
def precompute_pos_cis(dim: int, end: int, theta: float = 10000.0): |
|
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) |
|
t = torch.arange(end, device=freqs.device) |
|
freqs = torch.outer(t, freqs).float() |
|
pos_cis = torch.polar(torch.ones_like(freqs), freqs) |
|
return pos_cis |
|
|
|
|
|
def apply_rotary_emb(xq, xk, pos_cis): |
|
def unite_shape(pos_cis, x): |
|
ndim = x.ndim |
|
assert 0 <= 1 < ndim |
|
assert pos_cis.shape == (x.shape[1], x.shape[-1]) |
|
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)] |
|
return pos_cis.view(*shape) |
|
|
|
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) |
|
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2)) |
|
pos_cis = unite_shape(pos_cis, xq_) |
|
xq_out = torch.view_as_real(xq_ * pos_cis).flatten(3) |
|
xk_out = torch.view_as_real(xk_ * pos_cis).flatten(3) |
|
return xq_out.type_as(xq), xk_out.type_as(xk) |
|
|
|
|
|
def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
"""torch.repeat_interleave(x, dim=2, repeats=n_rep)""" |
|
bs, slen, n_kv_heads, head_dim = x.shape |
|
if n_rep == 1: |
|
return x |
|
return ( |
|
x[:, :, :, None, :] |
|
.expand(bs, slen, n_kv_heads, n_rep, head_dim) |
|
.reshape(bs, slen, n_kv_heads * n_rep, head_dim) |
|
) |
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__(self, args: LMConfig): |
|
super().__init__() |
|
self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads |
|
assert args.n_heads % self.n_kv_heads == 0 |
|
model_parallel_size = 1 |
|
self.n_local_heads = args.n_heads // model_parallel_size |
|
self.n_local_kv_heads = self.n_kv_heads // model_parallel_size |
|
self.n_rep = self.n_local_heads // self.n_local_kv_heads |
|
self.head_dim = args.dim // args.n_heads |
|
self.wq = nn.Linear(args.dim, args.n_heads * self.head_dim, bias=False) |
|
self.wk = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False) |
|
self.wv = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False) |
|
self.wo = nn.Linear(args.n_heads * self.head_dim, args.dim, bias=False) |
|
self.attn_dropout = nn.Dropout(args.dropout) |
|
self.resid_dropout = nn.Dropout(args.dropout) |
|
self.dropout = args.dropout |
|
|
|
|
|
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention') and args.flash_attn |
|
|
|
if not self.flash: |
|
|
|
mask = torch.full((1, 1, args.max_seq_len, args.max_seq_len), float("-inf")) |
|
mask = torch.triu(mask, diagonal=1) |
|
self.register_buffer("mask", mask) |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
pos_cis: torch.Tensor, |
|
use_kv_cache: bool = False, |
|
past_kv: Tuple[torch.Tensor] = None |
|
): |
|
bsz, seqlen, _ = x.shape |
|
|
|
|
|
if use_kv_cache: |
|
|
|
current_token = x[:, -1:, :] |
|
|
|
if not past_kv: |
|
xq = self.wq(x) |
|
xk, xv = self.wk(x), self.wv(x) |
|
else: |
|
past_key, past_value = past_kv |
|
xq = torch.cat((torch.zeros_like(x[:, :-1, :]), self.wq(current_token)), dim=1) |
|
xk = torch.cat((past_key, self.wk(current_token)), dim=1) |
|
xv = torch.cat((past_value, self.wv(current_token)), dim=1) |
|
|
|
past_kv = (xk, xv) |
|
else: |
|
xq = self.wq(x) |
|
xk, xv = self.wk(x), self.wv(x) |
|
|
|
xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim) |
|
xk = xk.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim) |
|
xv = xv.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim) |
|
|
|
|
|
xq, xk = apply_rotary_emb(xq, xk, pos_cis) |
|
|
|
|
|
xk = repeat_kv(xk, self.n_rep) |
|
xv = repeat_kv(xv, self.n_rep) |
|
|
|
|
|
xq = xq.transpose(1, 2) |
|
xk = xk.transpose(1, 2) |
|
xv = xv.transpose(1, 2) |
|
|
|
|
|
if self.flash: |
|
output = torch.nn.functional.scaled_dot_product_attention(xq, xk, xv, attn_mask=None, |
|
dropout_p=self.dropout if self.training else 0.0, |
|
is_causal=True) |
|
else: |
|
|
|
scores = torch.matmul(xq, xk.transpose(2, 3)) / math.sqrt(self.head_dim) |
|
assert hasattr(self, 'mask') |
|
scores = scores + self.mask[:, :, :seqlen, :seqlen] |
|
scores = F.softmax(scores.float(), dim=-1).type_as(xq) |
|
scores = self.attn_dropout(scores) |
|
output = torch.matmul(scores, xv) |
|
|
|
|
|
output = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1) |
|
|
|
|
|
output = self.wo(output) |
|
output = self.resid_dropout(output) |
|
return output, past_kv |
|
|
|
|
|
class FeedForward(nn.Module): |
|
def __init__(self, dim: int, hidden_dim: int, multiple_of: int, dropout: float): |
|
super().__init__() |
|
if hidden_dim is None: |
|
hidden_dim = 4 * dim |
|
hidden_dim = int(2 * hidden_dim / 3) |
|
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) |
|
self.w1 = nn.Linear(dim, hidden_dim, bias=False) |
|
self.w2 = nn.Linear(hidden_dim, dim, bias=False) |
|
self.w3 = nn.Linear(dim, hidden_dim, bias=False) |
|
self.dropout = nn.Dropout(dropout) |
|
|
|
def forward(self, x): |
|
return self.dropout(self.w2(F.silu(self.w1(x)) * self.w3(x))) |
|
|
|
|
|
class MoEGate(nn.Module): |
|
def __init__(self, config: LMConfig): |
|
super().__init__() |
|
self.config = config |
|
self.top_k = config.num_experts_per_tok |
|
self.n_routed_experts = config.n_routed_experts |
|
|
|
self.scoring_func = config.scoring_func |
|
self.alpha = config.aux_loss_alpha |
|
self.seq_aux = config.seq_aux |
|
|
|
|
|
self.norm_topk_prob = config.norm_topk_prob |
|
self.gating_dim = config.dim |
|
self.weight = nn.Parameter(torch.empty((self.n_routed_experts, self.gating_dim))) |
|
self.reset_parameters() |
|
|
|
def reset_parameters(self) -> None: |
|
import torch.nn.init as init |
|
init.kaiming_uniform_(self.weight, a=math.sqrt(5)) |
|
|
|
def forward(self, hidden_states): |
|
bsz, seq_len, h = hidden_states.shape |
|
|
|
hidden_states = hidden_states.view(-1, h) |
|
logits = F.linear(hidden_states, self.weight, None) |
|
if self.scoring_func == 'softmax': |
|
scores = logits.softmax(dim=-1) |
|
else: |
|
raise NotImplementedError(f'insupportable scoring function for MoE gating: {self.scoring_func}') |
|
|
|
|
|
topk_weight, topk_idx = torch.topk(scores, k=self.top_k, dim=-1, sorted=False) |
|
|
|
|
|
if self.top_k > 1 and self.norm_topk_prob: |
|
denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20 |
|
topk_weight = topk_weight / denominator |
|
|
|
|
|
if self.training and self.alpha > 0.0: |
|
scores_for_aux = scores |
|
aux_topk = self.top_k |
|
|
|
topk_idx_for_aux_loss = topk_idx.view(bsz, -1) |
|
if self.seq_aux: |
|
scores_for_seq_aux = scores_for_aux.view(bsz, seq_len, -1) |
|
ce = torch.zeros(bsz, self.n_routed_experts, device=hidden_states.device) |
|
ce.scatter_add_(1, topk_idx_for_aux_loss, |
|
torch.ones(bsz, seq_len * aux_topk, device=hidden_states.device)).div_( |
|
seq_len * aux_topk / self.n_routed_experts) |
|
aux_loss = (ce * scores_for_seq_aux.mean(dim=1)).sum(dim=1).mean() * self.alpha |
|
else: |
|
mask_ce = F.one_hot(topk_idx_for_aux_loss.view(-1), num_classes=self.n_routed_experts) |
|
ce = mask_ce.float().mean(0) |
|
Pi = scores_for_aux.mean(0) |
|
fi = ce * self.n_routed_experts |
|
aux_loss = (Pi * fi).sum() * self.alpha |
|
else: |
|
aux_loss = None |
|
return topk_idx, topk_weight, aux_loss |
|
|
|
|
|
class MOEFeedForward(nn.Module): |
|
def __init__(self, config: LMConfig): |
|
super().__init__() |
|
self.config = config |
|
self.experts = nn.ModuleList([ |
|
FeedForward( |
|
dim=config.dim, |
|
hidden_dim=config.hidden_dim, |
|
multiple_of=config.multiple_of, |
|
dropout=config.dropout, |
|
) |
|
for _ in range(config.n_routed_experts) |
|
]) |
|
|
|
self.gate = MoEGate(config) |
|
if config.n_shared_experts is not None: |
|
self.shared_experts = FeedForward( |
|
dim=config.dim, |
|
hidden_dim=config.hidden_dim, |
|
multiple_of=config.multiple_of, |
|
dropout=config.dropout, |
|
) |
|
|
|
def forward(self, x): |
|
identity = x |
|
orig_shape = x.shape |
|
bsz, seq_len, _ = x.shape |
|
|
|
|
|
topk_idx, topk_weight, aux_loss = self.gate(x) |
|
|
|
x = x.view(-1, x.shape[-1]) |
|
flat_topk_idx = topk_idx.view(-1) |
|
|
|
if self.training: |
|
|
|
x = x.repeat_interleave(self.config.num_experts_per_tok, dim=0) |
|
y = torch.empty_like(x, dtype=torch.float16) |
|
for i, expert in enumerate(self.experts): |
|
y[flat_topk_idx == i] = expert(x[flat_topk_idx == i]) |
|
y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1) |
|
y = y.view(*orig_shape) |
|
else: |
|
|
|
y = self.moe_infer(x, flat_topk_idx, topk_weight.view(-1, 1)).view(*orig_shape) |
|
|
|
if self.config.n_shared_experts is not None: |
|
y = y + self.shared_experts(identity) |
|
|
|
return y |
|
|
|
@torch.no_grad() |
|
def moe_infer(self, x, flat_expert_indices, flat_expert_weights): |
|
expert_cache = torch.zeros_like(x) |
|
idxs = flat_expert_indices.argsort() |
|
tokens_per_expert = flat_expert_indices.bincount().cpu().numpy().cumsum(0) |
|
token_idxs = idxs // self.config.num_experts_per_tok |
|
|
|
|
|
|
|
for i, end_idx in enumerate(tokens_per_expert): |
|
start_idx = 0 if i == 0 else tokens_per_expert[i - 1] |
|
if start_idx == end_idx: |
|
continue |
|
expert = self.experts[i] |
|
exp_token_idx = token_idxs[start_idx:end_idx] |
|
expert_tokens = x[exp_token_idx] |
|
expert_out = expert(expert_tokens) |
|
expert_out.mul_(flat_expert_weights[idxs[start_idx:end_idx]]) |
|
|
|
expert_cache.scatter_add_(0, exp_token_idx.view(-1, 1).repeat(1, x.shape[-1]), expert_out) |
|
|
|
return expert_cache |
|
|
|
|
|
class TransformerBlock(nn.Module): |
|
def __init__(self, layer_id: int, args: LMConfig): |
|
super().__init__() |
|
self.n_heads = args.n_heads |
|
self.dim = args.dim |
|
self.head_dim = args.dim // args.n_heads |
|
self.attention = Attention(args) |
|
|
|
self.layer_id = layer_id |
|
self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps) |
|
self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps) |
|
|
|
if args.use_moe: |
|
self.feed_forward = MOEFeedForward(args) |
|
else: |
|
self.feed_forward = FeedForward( |
|
dim=args.dim, |
|
hidden_dim=args.hidden_dim, |
|
multiple_of=args.multiple_of, |
|
dropout=args.dropout, |
|
) |
|
|
|
def forward(self, x, pos_cis, use_kv_cache=False, past_kv: Tuple[torch.Tensor] = None): |
|
attn_res, past_kv = self.attention(self.attention_norm(x), pos_cis, use_kv_cache, past_kv) |
|
h = x + attn_res |
|
out = h + self.feed_forward(self.ffn_norm(h)) |
|
return out, past_kv |
|
|
|
|
|
class Transformer(PreTrainedModel): |
|
config_class = LMConfig |
|
last_loss: Optional[torch.Tensor] |
|
|
|
def __init__(self, params: LMConfig = None): |
|
super().__init__(params) |
|
if not params: |
|
params = LMConfig() |
|
self.params = params |
|
self.vocab_size = params.vocab_size |
|
self.n_layers = params.n_layers |
|
|
|
self.tok_embeddings = nn.Embedding(params.vocab_size, params.dim) |
|
self.dropout = nn.Dropout(params.dropout) |
|
self.layers = torch.nn.ModuleList() |
|
for layer_id in range(self.n_layers): |
|
self.layers.append(TransformerBlock(layer_id, params)) |
|
self.norm = RMSNorm(params.dim, eps=params.norm_eps) |
|
self.output = nn.Linear(params.dim, params.vocab_size, bias=False) |
|
|
|
|
|
self.tok_embeddings.weight = self.output.weight |
|
|
|
|
|
pos_cis = precompute_pos_cis(self.params.dim // self.params.n_heads, self.params.max_seq_len) |
|
self.register_buffer("pos_cis", pos_cis, persistent=False) |
|
|
|
|
|
self.apply(self._init_weights) |
|
|
|
for pn, p in self.named_parameters(): |
|
if pn.endswith('w3.weight') or pn.endswith('wo.weight'): |
|
torch.nn.init.normal_(p, mean=0.0, std=0.02 / math.sqrt(2 * params.n_layers)) |
|
|
|
|
|
self.last_loss = None |
|
self.OUT = CausalLMOutputWithPast() |
|
|
|
def _init_weights(self, module): |
|
if isinstance(module, nn.Linear): |
|
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) |
|
if module.bias is not None: |
|
torch.nn.init.zeros_(module.bias) |
|
elif isinstance(module, nn.Embedding): |
|
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) |
|
|
|
def forward(self, tokens: Optional[torch.Tensor] = None, |
|
targets: Optional[torch.Tensor] = None, |
|
use_kv_cache=False, past_kvs=None, **keyargs): |
|
if past_kvs is None: |
|
past_kvs = [None for _ in range(self.n_layers)] |
|
if 'input_ids' in keyargs: |
|
tokens = keyargs['input_ids'] |
|
if 'attention_mask' in keyargs: |
|
targets = keyargs['attention_mask'] |
|
|
|
_bsz, seqlen = tokens.shape |
|
h = self.tok_embeddings(tokens) |
|
h = self.dropout(h) |
|
pos_cis = self.pos_cis[:seqlen] |
|
for idx, layer in enumerate(self.layers): |
|
h, past_kvs[idx] = layer(h, pos_cis, use_kv_cache, past_kvs[idx]) |
|
|
|
h = self.norm(h) |
|
|
|
if targets is not None: |
|
|
|
logits = self.output(h) |
|
self.last_loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1) |
|
else: |
|
|
|
logits = self.output(h[:, [-1], :]) |
|
self.last_loss = None |
|
|
|
self.OUT.__setitem__('logits', logits) |
|
self.OUT.__setitem__('last_loss', self.last_loss) |
|
|
|
if use_kv_cache: |
|
return self.OUT, past_kvs |
|
return self.OUT |
|
|
|
|
|
@torch.inference_mode() |
|
def generate(self, idx, eos, max_new_tokens, temperature=0.7, top_k=None, stream=True, repetition_penalty=1.): |
|
index = idx.shape[1] |
|
use_kv_cache = True |
|
past_kvs = [None for _ in range(self.n_layers)] |
|
while idx.shape[1] < max_new_tokens - 1: |
|
|
|
idx_cond = idx |
|
|
|
inference_res = self(idx_cond, use_kv_cache=use_kv_cache, past_kvs=past_kvs) |
|
if use_kv_cache: |
|
logits, past_kvs = inference_res[0].logits, inference_res[1] |
|
else: |
|
logits = inference_res.logits |
|
|
|
logits = logits[:, -1, :] |
|
|
|
|
|
for token in set(idx.tolist()[0]): |
|
logits[:, token] /= repetition_penalty |
|
|
|
if temperature == 0.0: |
|
|
|
__, idx_next = torch.topk(logits, k=1, dim=-1) |
|
else: |
|
|
|
logits = logits / temperature |
|
|
|
if top_k is not None: |
|
v, __ = torch.topk(logits, min(top_k, logits.size(-1))) |
|
logits[logits < v[:, [-1]]] = -float('Inf') |
|
|
|
|
|
probs = F.softmax(logits, dim=-1) |
|
idx_next = torch.multinomial(probs, num_samples=1, generator=None) |
|
|
|
if idx_next == eos: |
|
break |
|
|
|
idx = torch.cat((idx, idx_next), dim=1) |
|
if stream: |
|
yield idx[:, index:] |
|
|
|
if not stream: |
|
yield idx[:, index:] |
|
|
|
@torch.inference_mode() |
|
def eval_answer(self, idx): |
|
|
|
idx_cond = idx if idx.size(1) <= self.params.max_seq_len else idx[:, -self.params.max_seq_len:] |
|
|
|
past_kvs = [None for _ in range(self.n_layers)] |
|
inference_res = self(idx_cond, use_kv_cache=False, past_kvs=past_kvs) |
|
logits = inference_res.logits |
|
logits = logits[:, -1, :] |
|
return logits |
|
|
|
def export(self, filepath='model.bin'): |
|
"""export the model weights in fp32 into .bin file to be read from C""" |
|
f = open(filepath, 'wb') |
|
|
|
def serialize(t): |
|
d = t.detach().cpu().view(-1).numpy().astype(np.float32) |
|
b = struct.pack(f'{len(d)}f', *d) |
|
f.write(b) |
|
|
|
|
|
hidden_dim = self.layers[0].feed_forward.w1.weight.shape[0] |
|
p = self.params |
|
n_kv_heads = p.n_heads if p.n_kv_heads is None else p.n_kv_heads |
|
header = struct.pack('iiiiiii', p.dim, hidden_dim, p.n_layers, p.n_heads, |
|
n_kv_heads, p.vocab_size, p.max_seq_len) |
|
f.write(header) |
|
|
|
|
|
serialize(self.tok_embeddings.weight) |
|
|
|
|
|
|
|
for layer in self.layers: |
|
serialize(layer.attention_norm.weight) |
|
for layer in self.layers: |
|
serialize(layer.attention.wq.weight) |
|
for layer in self.layers: |
|
serialize(layer.attention.wk.weight) |
|
for layer in self.layers: |
|
serialize(layer.attention.wv.weight) |
|
for layer in self.layers: |
|
serialize(layer.attention.wo.weight) |
|
|
|
for layer in self.layers: |
|
serialize(layer.ffn_norm.weight) |
|
for layer in self.layers: |
|
serialize(layer.feed_forward.w1.weight) |
|
for layer in self.layers: |
|
serialize(layer.feed_forward.w2.weight) |
|
for layer in self.layers: |
|
serialize(layer.feed_forward.w3.weight) |
|
|
|
serialize(self.norm.weight) |
|
|
|
|
|
serialize(self.freqs_cos[:p.max_seq_len]) |
|
serialize(self.freqs_sin[:p.max_seq_len]) |
|
|
|
|
|
f.close() |
|
print(f"wrote {filepath}") |
|
|