See axolotl config
axolotl version: 0.4.0
base_model: NousResearch/Meta-Llama-3-70B
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer # PreTrainedTokenizerFast
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: Doctor-Shotgun/no-robots-sharegpt
type: sharegpt
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./out/qlora-llama3-70b
adapter: qlora
lora_model_dir:
sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false
lora_r: 64
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
fsdp_limit_all_gathers: true
fsdp_sync_module_states: true
fsdp_offload_params: false
fsdp_use_orig_params: false
fsdp_cpu_ram_efficient_loading: true
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
fsdp_state_dict_type: FULL_STATE_DICT
fsdp_sharding_strategy: FULL_SHARD
special_tokens:
pad_token: <|end_of_text|>
out/qlora-llama3-70b
This model is a fine-tuned version of NousResearch/Meta-Llama-3-70B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.5377
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.7144 | 0.02 | 1 | 1.8096 |
1.6886 | 0.25 | 12 | 1.5367 |
1.6174 | 0.49 | 24 | 1.5176 |
1.5848 | 0.74 | 36 | 1.5054 |
1.6542 | 0.98 | 48 | 1.5018 |
1.572 | 1.21 | 60 | 1.4993 |
1.5966 | 1.45 | 72 | 1.5007 |
1.5643 | 1.7 | 84 | 1.4981 |
1.6312 | 1.94 | 96 | 1.4980 |
1.5311 | 2.16 | 108 | 1.5027 |
1.519 | 2.41 | 120 | 1.5109 |
1.4034 | 2.65 | 132 | 1.5165 |
1.4658 | 2.9 | 144 | 1.5187 |
1.5434 | 3.11 | 156 | 1.5264 |
1.4608 | 3.35 | 168 | 1.5364 |
1.4529 | 3.6 | 180 | 1.5377 |
1.3893 | 3.85 | 192 | 1.5377 |
Framework versions
- PEFT 0.10.0
- Transformers 4.40.0.dev0
- Pytorch 2.2.1
- Datasets 2.15.0
- Tokenizers 0.15.0
- Downloads last month
- 2
Model tree for wave-on-discord/llama-3-70b-no-robots-adapter
Base model
NousResearch/Meta-Llama-3-70B