Model description

[More Information Needed]

Intended uses & limitations

[More Information Needed]

Training Procedure

[More Information Needed]

Hyperparameters

Click to expand
Hyperparameter Value
memory
steps [('featureunion', FeatureUnion(transformer_list=[('float32_transform_139955258811312',
Pipeline(steps=[('numpycolumnselector',
NumpyColumnSelector(columns=[1,
2,
3])),
('compressstrings',
CompressStrings(compress_type='hash',
dtypes_list=['char_str',
'char_str',
'char_str'],
missing_values_reference_list=['',
'-',
'?',
nan],
misslist_list=[[],
[],
[]])),
('numpyreplacemissingvalues'...
FloatStr2Float(dtypes_list=['float_int_num',
'float_num',
'float_num'],
missing_values_reference_list=[])),
('numpyreplacemissingvalues',
NumpyReplaceMissingValues(missing_values=[])),
('numimputer',
NumImputer(missing_values=nan,
strategy='median')),
('optstandardscaler',
OptStandardScaler(use_scaler_flag=False)),
('float32_transform',
float32_transform())]))])), ('numpypermutearray', NumpyPermuteArray(axis=0, permutation_indices=[1, 2, 3, 0, 4, 5])), ('lgbmclassifier', LGBMClassifier(class_weight='balanced', n_jobs=1, random_state=33))]
verbose False
featureunion FeatureUnion(transformer_list=[('float32_transform_139955258811312',
Pipeline(steps=[('numpycolumnselector',
NumpyColumnSelector(columns=[1,
2,
3])),
('compressstrings',
CompressStrings(compress_type='hash',
dtypes_list=['char_str',
'char_str',
'char_str'],
missing_values_reference_list=['',
'-',
'?',
nan],
misslist_list=[[],
[],
[]])),
('numpyreplacemissingvalues'...
FloatStr2Float(dtypes_list=['float_int_num',
'float_num',
'float_num'],
missing_values_reference_list=[])),
('numpyreplacemissingvalues',
NumpyReplaceMissingValues(missing_values=[])),
('numimputer',
NumImputer(missing_values=nan,
strategy='median')),
('optstandardscaler',
OptStandardScaler(use_scaler_flag=False)),
('float32_transform',
float32_transform())]))])
numpypermutearray NumpyPermuteArray(axis=0, permutation_indices=[1, 2, 3, 0, 4, 5])
lgbmclassifier LGBMClassifier(class_weight='balanced', n_jobs=1, random_state=33)
featureunion__n_jobs
featureunion__transformer_list [('float32_transform_139955258811312', Pipeline(steps=[('numpycolumnselector', NumpyColumnSelector(columns=[1, 2, 3])),
('compressstrings',
CompressStrings(compress_type='hash',
dtypes_list=['char_str', 'char_str',
'char_str'],
missing_values_reference_list=['', '-', '?',
nan],
misslist_list=[[], [], []])),
('numpyreplacemissingvalues',
NumpyReplaceMissingValues(missing_values=[])),
('numpyreplaceunknown...
40061271003327253395033901872323469393]],
missing_values_reference_list=['',
'-',
'?',
nan])),
('boolean2float', boolean2float()),
('catimputer',
CatImputer(missing_values=nan, strategy='most_frequent')),
('catencoder',
CatEncoder(categories='auto', dtype=<class 'numpy.float64'>,
encoding='ordinal', handle_unknown='error')),
('float32_transform', float32_transform())])), ('float32_transform_139955258809968', Pipeline(steps=[('numpycolumnselector', NumpyColumnSelector(columns=[0, 4, 5])),
('floatstr2float',
FloatStr2Float(dtypes_list=['float_int_num', 'float_num',
'float_num'],
missing_values_reference_list=[])),
('numpyreplacemissingvalues',
NumpyReplaceMissingValues(missing_values=[])),
('numimputer',
NumImputer(missing_values=nan, strategy='median')),
('optstandardscaler', OptStandardScaler(use_scaler_flag=False)),
('float32_transform', float32_transform())]))]
featureunion__transformer_weights
featureunion__verbose False
featureunion__float32_transform_139955258811312 Pipeline(steps=[('numpycolumnselector', NumpyColumnSelector(columns=[1, 2, 3])),
('compressstrings',
CompressStrings(compress_type='hash',
dtypes_list=['char_str', 'char_str',
'char_str'],
missing_values_reference_list=['', '-', '?',
nan],
misslist_list=[[], [], []])),
('numpyreplacemissingvalues',
NumpyReplaceMissingValues(missing_values=[])),
('numpyreplaceunknown...
40061271003327253395033901872323469393]],
missing_values_reference_list=['',
'-',
'?',
nan])),
('boolean2float', boolean2float()),
('catimputer',
CatImputer(missing_values=nan, strategy='most_frequent')),
('catencoder',
CatEncoder(categories='auto', dtype=<class 'numpy.float64'>,
encoding='ordinal', handle_unknown='error')),
('float32_transform', float32_transform())])
featureunion__float32_transform_139955258809968 Pipeline(steps=[('numpycolumnselector', NumpyColumnSelector(columns=[0, 4, 5])),
('floatstr2float',
FloatStr2Float(dtypes_list=['float_int_num', 'float_num',
'float_num'],
missing_values_reference_list=[])),
('numpyreplacemissingvalues',
NumpyReplaceMissingValues(missing_values=[])),
('numimputer',
NumImputer(missing_values=nan, strategy='median')),
('optstandardscaler', OptStandardScaler(use_scaler_flag=False)),
('float32_transform', float32_transform())])
featureunion__float32_transform_139955258811312__memory
featureunion__float32_transform_139955258811312__steps [('numpycolumnselector', NumpyColumnSelector(columns=[1, 2, 3])), ('compressstrings', CompressStrings(compress_type='hash',
dtypes_list=['char_str', 'char_str', 'char_str'],
missing_values_reference_list=['', '-', '?', nan],
misslist_list=[[], [], []])), ('numpyreplacemissingvalues', NumpyReplaceMissingValues(missing_values=[])), ('numpyreplaceunknownvalues', NumpyReplaceUnknownValues(filling_values=nan,
filling_values_list=[nan, nan, nan],
known_values_list=[[170172835760119224333519554008280666130,
140114708448418632577632402066430035116],
[245397760256243238036686602120338271372,
87378989482499796866217412016778320776,
40061271003327253395033901872323469393],
[245397760256243238036686602120338271372,
40061271003327253395033901872323469393]],
missing_values_reference_list=['', '-', '?', nan])), ('boolean2float', boolean2float()), ('catimputer', CatImputer(missing_values=nan, strategy='most_frequent')), ('catencoder', CatEncoder(categories='auto', dtype=<class 'numpy.float64'>, encoding='ordinal',
handle_unknown='error')), ('float32_transform', float32_transform())]
featureunion__float32_transform_139955258811312__verbose False
featureunion__float32_transform_139955258811312__numpycolumnselector NumpyColumnSelector(columns=[1, 2, 3])
featureunion__float32_transform_139955258811312__compressstrings CompressStrings(compress_type='hash',
dtypes_list=['char_str', 'char_str', 'char_str'],
missing_values_reference_list=['', '-', '?', nan],
misslist_list=[[], [], []])
featureunion__float32_transform_139955258811312__numpyreplacemissingvalues NumpyReplaceMissingValues(missing_values=[])
featureunion__float32_transform_139955258811312__numpyreplaceunknownvalues NumpyReplaceUnknownValues(filling_values=nan,
filling_values_list=[nan, nan, nan],
known_values_list=[[170172835760119224333519554008280666130,
140114708448418632577632402066430035116],
[245397760256243238036686602120338271372,
87378989482499796866217412016778320776,
40061271003327253395033901872323469393],
[245397760256243238036686602120338271372,
40061271003327253395033901872323469393]],
missing_values_reference_list=['', '-', '?', nan])
featureunion__float32_transform_139955258811312__boolean2float boolean2float()
featureunion__float32_transform_139955258811312__catimputer CatImputer(missing_values=nan, strategy='most_frequent')
featureunion__float32_transform_139955258811312__catencoder CatEncoder(categories='auto', dtype=<class 'numpy.float64'>, encoding='ordinal',
handle_unknown='error')
featureunion__float32_transform_139955258811312__float32_transform float32_transform()
featureunion__float32_transform_139955258811312__numpycolumnselector__columns [1, 2, 3]
featureunion__float32_transform_139955258811312__compressstrings__activate_flag True
featureunion__float32_transform_139955258811312__compressstrings__compress_type hash
featureunion__float32_transform_139955258811312__compressstrings__dtypes_list ['char_str', 'char_str', 'char_str']
featureunion__float32_transform_139955258811312__compressstrings__missing_values_reference_list ['', '-', '?', nan]
featureunion__float32_transform_139955258811312__compressstrings__misslist_list [[], [], []]
featureunion__float32_transform_139955258811312__numpyreplacemissingvalues__filling_values nan
featureunion__float32_transform_139955258811312__numpyreplacemissingvalues__missing_values []
featureunion__float32_transform_139955258811312__numpyreplaceunknownvalues__filling_values nan
featureunion__float32_transform_139955258811312__numpyreplaceunknownvalues__filling_values_list [nan, nan, nan]
featureunion__float32_transform_139955258811312__numpyreplaceunknownvalues__known_values_list [[170172835760119224333519554008280666130, 140114708448418632577632402066430035116], [245397760256243238036686602120338271372, 87378989482499796866217412016778320776, 40061271003327253395033901872323469393], [245397760256243238036686602120338271372, 40061271003327253395033901872323469393]]
featureunion__float32_transform_139955258811312__numpyreplaceunknownvalues__missing_values_reference_list ['', '-', '?', nan]
featureunion__float32_transform_139955258811312__boolean2float__activate_flag True
featureunion__float32_transform_139955258811312__catimputer__activate_flag True
featureunion__float32_transform_139955258811312__catimputer__missing_values nan
featureunion__float32_transform_139955258811312__catimputer__sklearn_version_family 1
featureunion__float32_transform_139955258811312__catimputer__strategy most_frequent
featureunion__float32_transform_139955258811312__catencoder__activate_flag True
featureunion__float32_transform_139955258811312__catencoder__categories auto
featureunion__float32_transform_139955258811312__catencoder__dtype <class 'numpy.float64'>
featureunion__float32_transform_139955258811312__catencoder__encoding ordinal
featureunion__float32_transform_139955258811312__catencoder__handle_unknown error
featureunion__float32_transform_139955258811312__catencoder__sklearn_version_family 1
featureunion__float32_transform_139955258811312__float32_transform__activate_flag True
featureunion__float32_transform_139955258809968__memory
featureunion__float32_transform_139955258809968__steps [('numpycolumnselector', NumpyColumnSelector(columns=[0, 4, 5])), ('floatstr2float', FloatStr2Float(dtypes_list=['float_int_num', 'float_num', 'float_num'],
missing_values_reference_list=[])), ('numpyreplacemissingvalues', NumpyReplaceMissingValues(missing_values=[])), ('numimputer', NumImputer(missing_values=nan, strategy='median')), ('optstandardscaler', OptStandardScaler(use_scaler_flag=False)), ('float32_transform', float32_transform())]
featureunion__float32_transform_139955258809968__verbose False
featureunion__float32_transform_139955258809968__numpycolumnselector NumpyColumnSelector(columns=[0, 4, 5])
featureunion__float32_transform_139955258809968__floatstr2float FloatStr2Float(dtypes_list=['float_int_num', 'float_num', 'float_num'],
missing_values_reference_list=[])
featureunion__float32_transform_139955258809968__numpyreplacemissingvalues NumpyReplaceMissingValues(missing_values=[])
featureunion__float32_transform_139955258809968__numimputer NumImputer(missing_values=nan, strategy='median')
featureunion__float32_transform_139955258809968__optstandardscaler OptStandardScaler(use_scaler_flag=False)
featureunion__float32_transform_139955258809968__float32_transform float32_transform()
featureunion__float32_transform_139955258809968__numpycolumnselector__columns [0, 4, 5]
featureunion__float32_transform_139955258809968__floatstr2float__activate_flag True
featureunion__float32_transform_139955258809968__floatstr2float__dtypes_list ['float_int_num', 'float_num', 'float_num']
featureunion__float32_transform_139955258809968__floatstr2float__missing_values_reference_list []
featureunion__float32_transform_139955258809968__numpyreplacemissingvalues__filling_values nan
featureunion__float32_transform_139955258809968__numpyreplacemissingvalues__missing_values []
featureunion__float32_transform_139955258809968__numimputer__activate_flag True
featureunion__float32_transform_139955258809968__numimputer__missing_values nan
featureunion__float32_transform_139955258809968__numimputer__strategy median
featureunion__float32_transform_139955258809968__optstandardscaler__use_scaler_flag False
featureunion__float32_transform_139955258809968__float32_transform__activate_flag True
numpypermutearray__axis 0
numpypermutearray__permutation_indices [1, 2, 3, 0, 4, 5]
lgbmclassifier__boosting_type gbdt
lgbmclassifier__class_weight balanced
lgbmclassifier__colsample_bytree 1.0
lgbmclassifier__importance_type split
lgbmclassifier__learning_rate 0.1
lgbmclassifier__max_depth -1
lgbmclassifier__min_child_samples 20
lgbmclassifier__min_child_weight 0.001
lgbmclassifier__min_split_gain 0.0
lgbmclassifier__n_estimators 100
lgbmclassifier__n_jobs 1
lgbmclassifier__num_leaves 31
lgbmclassifier__objective
lgbmclassifier__random_state 33
lgbmclassifier__reg_alpha 0.0
lgbmclassifier__reg_lambda 0.0
lgbmclassifier__silent warn
lgbmclassifier__subsample 1.0
lgbmclassifier__subsample_for_bin 200000
lgbmclassifier__subsample_freq 0

Model Plot

Pipeline(steps=[('featureunion',FeatureUnion(transformer_list=[('float32_transform_139955258811312',Pipeline(steps=[('numpycolumnselector',NumpyColumnSelector(columns=[1,2,3])),('compressstrings',CompressStrings(compress_type='hash',dtypes_list=['char_str','char_str','char_str'],missing_values_reference_list=['','-','?',nan],misslist_list=[[],[],[]...NumpyReplaceMissingValues(missing_values=[])),('numimputer',NumImputer(missing_values=nan,strategy='median')),('optstandardscaler',OptStandardScaler(use_scaler_flag=False)),('float32_transform',float32_transform())]))])),('numpypermutearray',NumpyPermuteArray(axis=0,permutation_indices=[1, 2, 3, 0, 4, 5])),('lgbmclassifier',LGBMClassifier(class_weight='balanced', n_jobs=1,random_state=33))])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

Evaluation Results

[More Information Needed]

How to Get Started with the Model

[More Information Needed]

Model Card Authors

This model card is written by following authors:

[More Information Needed]

Model Card Contact

You can contact the model card authors through following channels: [More Information Needed]

Citation

Below you can find information related to citation.

BibTeX:

[More Information Needed]

model_card_authors

wenpei

model_description

test propose for autoai and hugging face

Downloads last month
0
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.