We provide two ways to use SaProt, including through huggingface class and through the same way as in esm github. Users can choose either one to use.

Huggingface model

The following code shows how to load the model.

from transformers import EsmTokenizer, EsmForMaskedLM

model_path = "/your/path/to/SaProt_35M_AF2"
tokenizer = EsmTokenizer.from_pretrained(model_path)
model = EsmForMaskedLM.from_pretrained(model_path)

#################### Example ####################
device = "cuda"
model.to(device)

seq = "M#EvVpQpL#VyQdYaKv" # Here "#" represents lower plDDT regions (plddt < 70)
tokens = tokenizer.tokenize(seq)
print(tokens)

inputs = tokenizer(seq, return_tensors="pt")
inputs = {k: v.to(device) for k, v in inputs.items()}

outputs = model(**inputs)
print(outputs.logits.shape)

"""
['M#', 'Ev', 'Vp', 'Qp', 'L#', 'Vy', 'Qd', 'Ya', 'Kv']
torch.Size([1, 11, 446])
"""

esm model

The esm version is also stored in the same folder, named SaProt_35M_AF2.pt. We provide a function to load the model.

from utils.esm_loader import load_esm_saprot

model_path = "/your/path/to/SaProt_35M_AF2.pt"
model, alphabet = load_esm_saprot(model_path)
Downloads last month
2,553
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for westlake-repl/SaProt_35M_AF2

Adapters
60 models
Finetunes
1 model