whitebemail's picture
update model card README.md
4244120
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - timit_asr
model-index:
  - name: test_lai_phonomes_transf
    results: []

test_lai_phonomes_transf

This model is a fine-tuned version of facebook/wav2vec2-base on the timit_asr dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3317
  • Cer: 0.1174

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 2500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer
5.9718 0.4 100 3.5323 0.7939
2.9356 0.8 200 2.1987 0.6826
1.3018 1.2 300 1.1248 0.3547
0.6407 1.61 400 0.4636 0.1714
0.514 2.01 500 0.3942 0.1603
0.4476 2.41 600 0.3745 0.1481
0.4342 2.81 700 0.3387 0.1375
0.3979 3.21 800 0.3433 0.1379
0.4003 3.61 900 0.3596 0.1329
0.3826 4.02 1000 0.3226 0.1322
0.3487 4.42 1100 0.3338 0.1264
0.338 4.82 1200 0.3159 0.1274
0.3141 5.22 1300 0.3248 0.1257
0.3011 5.62 1400 0.3363 0.1247
0.2853 6.02 1500 0.3099 0.1215
0.2436 6.43 1600 0.3113 0.1206
0.253 6.83 1700 0.3054 0.1202
0.236 7.23 1800 0.3369 0.1230
0.2132 7.63 1900 0.3263 0.1190
0.2179 8.03 2000 0.3195 0.1191
0.1953 8.43 2100 0.3214 0.1189
0.1855 8.84 2200 0.3285 0.1181
0.1831 9.24 2300 0.3344 0.1179
0.1714 9.64 2400 0.3363 0.1182
0.1642 10.04 2500 0.3317 0.1174

Framework versions

  • Transformers 4.17.0
  • Pytorch 2.4.0
  • Datasets 1.18.3
  • Tokenizers 0.21.0