test_last_transformer_1
This model is a fine-tuned version of facebook/wav2vec2-base on the timit_asr dataset. It achieves the following results on the evaluation set:
- Loss: 0.3254
- Cer: 0.1178
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Cer |
---|---|---|---|---|
6.5814 | 0.4 | 100 | 3.4669 | 0.8825 |
2.9541 | 0.8 | 200 | 2.1664 | 0.6831 |
1.313 | 1.2 | 300 | 0.7007 | 0.2299 |
0.6578 | 1.61 | 400 | 0.4822 | 0.1815 |
0.5294 | 2.01 | 500 | 0.4487 | 0.1603 |
0.4607 | 2.41 | 600 | 0.3862 | 0.1441 |
0.4404 | 2.81 | 700 | 0.3722 | 0.1443 |
0.4014 | 3.21 | 800 | 0.3643 | 0.1335 |
0.4038 | 3.61 | 900 | 0.3462 | 0.1306 |
0.3876 | 4.02 | 1000 | 0.3295 | 0.1304 |
0.3461 | 4.42 | 1100 | 0.3139 | 0.1254 |
0.3414 | 4.82 | 1200 | 0.3010 | 0.1231 |
0.3096 | 5.22 | 1300 | 0.3078 | 0.1230 |
0.305 | 5.62 | 1400 | 0.3273 | 0.1299 |
0.2868 | 6.02 | 1500 | 0.3016 | 0.1214 |
0.2535 | 6.43 | 1600 | 0.3022 | 0.1194 |
0.2596 | 6.83 | 1700 | 0.2980 | 0.1209 |
0.2414 | 7.23 | 1800 | 0.3130 | 0.1200 |
0.2174 | 7.63 | 1900 | 0.3076 | 0.1178 |
0.2214 | 8.03 | 2000 | 0.3021 | 0.1174 |
0.197 | 8.43 | 2100 | 0.3110 | 0.1182 |
0.193 | 8.84 | 2200 | 0.3169 | 0.1182 |
0.187 | 9.24 | 2300 | 0.3187 | 0.1185 |
0.1772 | 9.64 | 2400 | 0.3254 | 0.1178 |
Framework versions
- Transformers 4.17.0
- Pytorch 2.4.0
- Datasets 1.18.3
- Tokenizers 0.20.3
- Downloads last month
- 1