SentenceTransformer based on cointegrated/LaBSE-en-ru
This is a sentence-transformers model finetuned from cointegrated/LaBSE-en-ru. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: cointegrated/LaBSE-en-ru
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
(3): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("whitemouse84/LaBSE-en-ru-distilled-each-third-layer")
# Run inference
sentences = [
'See Name section.',
'Ms. Packard is the voice of the female blood elf in the video game World of Warcraft.',
'Yeah, people who might not be hungry.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.5305 |
spearman_cosine | 0.6347 |
pearson_manhattan | 0.5553 |
spearman_manhattan | 0.6389 |
pearson_euclidean | 0.55 |
spearman_euclidean | 0.6347 |
pearson_dot | 0.5305 |
spearman_dot | 0.6347 |
pearson_max | 0.5553 |
spearman_max | 0.6389 |
Knowledge Distillation
- Evaluated with
MSEEvaluator
Metric | Value |
---|---|
negative_mse | -0.0063 |
Semantic Similarity
- Dataset:
sts-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.5043 |
spearman_cosine | 0.5986 |
pearson_manhattan | 0.5227 |
spearman_manhattan | 0.5984 |
pearson_euclidean | 0.5227 |
spearman_euclidean | 0.5986 |
pearson_dot | 0.5043 |
spearman_dot | 0.5986 |
pearson_max | 0.5227 |
spearman_max | 0.5986 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 10,975,066 training samples
- Columns:
sentence
andlabel
- Approximate statistics based on the first 1000 samples:
sentence label type string list details - min: 6 tokens
- mean: 26.93 tokens
- max: 139 tokens
- size: 768 elements
- Samples:
sentence label It is based on the Java Persistence API (JPA), but it does not strictly follow the JSR 338 Specification, as it implements different design patterns and technologies.
[-0.012331949546933174, -0.04570527374744415, -0.024963658303022385, -0.03620213270187378, 0.022556383162736893, ...]
Покупаем вторичное сырье в Каунасе (Переработка вторичного сырья) - Алфенас АНД КО, ЗАО на Bizorg.
[-0.07498518377542496, -0.01913534104824066, -0.01797042042016983, 0.048263177275657654, -0.00016611881437711418, ...]
At the Equal Justice Conference ( EJC ) held in March 2001 in San Diego , LSC and the Project for the Future of Equal Justice held the second Case Management Software pre-conference .
[0.03870972990989685, -0.0638347640633583, -0.01696585863828659, -0.043612319976091385, -0.048241738229990005, ...]
- Loss:
MSELoss
Evaluation Dataset
Unnamed Dataset
- Size: 10,000 evaluation samples
- Columns:
sentence
andlabel
- Approximate statistics based on the first 1000 samples:
sentence label type string list details - min: 5 tokens
- mean: 24.18 tokens
- max: 111 tokens
- size: 768 elements
- Samples:
sentence label The Canadian Canoe Museum is a museum dedicated to canoes located in Peterborough, Ontario, Canada.
[-0.05444105342030525, -0.03650881350040436, -0.041163671761751175, -0.010616903193295002, -0.04094529151916504, ...]
И мне нравилось, что я одновременно зарабатываю и смотрю бои».
[-0.03404555842280388, 0.028203096240758896, -0.056121889501810074, -0.0591997392475605, -0.05523117259144783, ...]
Ну, а на следующий день, разумеется, Президент Кеннеди объявил блокаду Кубы, и наши корабли остановили у кубинских берегов направлявшийся на Кубу российский корабль, и у него на борту нашли ракеты.
[-0.008193841204047203, 0.00694894278421998, -0.03027420863509178, -0.03290146216750145, 0.01425305474549532, ...]
- Loss:
MSELoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 64per_device_eval_batch_size
: 64learning_rate
: 0.0001num_train_epochs
: 1warmup_ratio
: 0.1fp16
: Trueload_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 0.0001weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | loss | negative_mse | sts-dev_spearman_cosine | sts-test_spearman_cosine |
---|---|---|---|---|---|---|
0 | 0 | - | - | -0.2381 | 0.4206 | - |
0.0058 | 1000 | 0.0014 | - | - | - | - |
0.0117 | 2000 | 0.0009 | - | - | - | - |
0.0175 | 3000 | 0.0007 | - | - | - | - |
0.0233 | 4000 | 0.0006 | - | - | - | - |
0.0292 | 5000 | 0.0005 | 0.0004 | -0.0363 | 0.6393 | - |
0.0350 | 6000 | 0.0004 | - | - | - | - |
0.0408 | 7000 | 0.0004 | - | - | - | - |
0.0467 | 8000 | 0.0003 | - | - | - | - |
0.0525 | 9000 | 0.0003 | - | - | - | - |
0.0583 | 10000 | 0.0003 | 0.0002 | -0.0207 | 0.6350 | - |
0.0641 | 11000 | 0.0003 | - | - | - | - |
0.0700 | 12000 | 0.0003 | - | - | - | - |
0.0758 | 13000 | 0.0002 | - | - | - | - |
0.0816 | 14000 | 0.0002 | - | - | - | - |
0.0875 | 15000 | 0.0002 | 0.0002 | -0.0157 | 0.6328 | - |
0.0933 | 16000 | 0.0002 | - | - | - | - |
0.0991 | 17000 | 0.0002 | - | - | - | - |
0.1050 | 18000 | 0.0002 | - | - | - | - |
0.1108 | 19000 | 0.0002 | - | - | - | - |
0.1166 | 20000 | 0.0002 | 0.0001 | -0.0132 | 0.6317 | - |
0.1225 | 21000 | 0.0002 | - | - | - | - |
0.1283 | 22000 | 0.0002 | - | - | - | - |
0.1341 | 23000 | 0.0002 | - | - | - | - |
0.1400 | 24000 | 0.0002 | - | - | - | - |
0.1458 | 25000 | 0.0002 | 0.0001 | -0.0118 | 0.6251 | - |
0.1516 | 26000 | 0.0002 | - | - | - | - |
0.1574 | 27000 | 0.0002 | - | - | - | - |
0.1633 | 28000 | 0.0002 | - | - | - | - |
0.1691 | 29000 | 0.0002 | - | - | - | - |
0.1749 | 30000 | 0.0002 | 0.0001 | -0.0109 | 0.6304 | - |
0.1808 | 31000 | 0.0002 | - | - | - | - |
0.1866 | 32000 | 0.0002 | - | - | - | - |
0.1924 | 33000 | 0.0002 | - | - | - | - |
0.1983 | 34000 | 0.0001 | - | - | - | - |
0.2041 | 35000 | 0.0001 | 0.0001 | -0.0102 | 0.6280 | - |
0.2099 | 36000 | 0.0001 | - | - | - | - |
0.2158 | 37000 | 0.0001 | - | - | - | - |
0.2216 | 38000 | 0.0001 | - | - | - | - |
0.2274 | 39000 | 0.0001 | - | - | - | - |
0.2333 | 40000 | 0.0001 | 0.0001 | -0.0098 | 0.6272 | - |
0.2391 | 41000 | 0.0001 | - | - | - | - |
0.2449 | 42000 | 0.0001 | - | - | - | - |
0.2507 | 43000 | 0.0001 | - | - | - | - |
0.2566 | 44000 | 0.0001 | - | - | - | - |
0.2624 | 45000 | 0.0001 | 0.0001 | -0.0093 | 0.6378 | - |
0.2682 | 46000 | 0.0001 | - | - | - | - |
0.2741 | 47000 | 0.0001 | - | - | - | - |
0.2799 | 48000 | 0.0001 | - | - | - | - |
0.2857 | 49000 | 0.0001 | - | - | - | - |
0.2916 | 50000 | 0.0001 | 0.0001 | -0.0089 | 0.6325 | - |
0.2974 | 51000 | 0.0001 | - | - | - | - |
0.3032 | 52000 | 0.0001 | - | - | - | - |
0.3091 | 53000 | 0.0001 | - | - | - | - |
0.3149 | 54000 | 0.0001 | - | - | - | - |
0.3207 | 55000 | 0.0001 | 0.0001 | -0.0087 | 0.6328 | - |
0.3266 | 56000 | 0.0001 | - | - | - | - |
0.3324 | 57000 | 0.0001 | - | - | - | - |
0.3382 | 58000 | 0.0001 | - | - | - | - |
0.3441 | 59000 | 0.0001 | - | - | - | - |
0.3499 | 60000 | 0.0001 | 0.0001 | -0.0085 | 0.6357 | - |
0.3557 | 61000 | 0.0001 | - | - | - | - |
0.3615 | 62000 | 0.0001 | - | - | - | - |
0.3674 | 63000 | 0.0001 | - | - | - | - |
0.3732 | 64000 | 0.0001 | - | - | - | - |
0.3790 | 65000 | 0.0001 | 0.0001 | -0.0083 | 0.6366 | - |
0.3849 | 66000 | 0.0001 | - | - | - | - |
0.3907 | 67000 | 0.0001 | - | - | - | - |
0.3965 | 68000 | 0.0001 | - | - | - | - |
0.4024 | 69000 | 0.0001 | - | - | - | - |
0.4082 | 70000 | 0.0001 | 0.0001 | -0.0080 | 0.6325 | - |
0.4140 | 71000 | 0.0001 | - | - | - | - |
0.4199 | 72000 | 0.0001 | - | - | - | - |
0.4257 | 73000 | 0.0001 | - | - | - | - |
0.4315 | 74000 | 0.0001 | - | - | - | - |
0.4374 | 75000 | 0.0001 | 0.0001 | -0.0078 | 0.6351 | - |
0.4432 | 76000 | 0.0001 | - | - | - | - |
0.4490 | 77000 | 0.0001 | - | - | - | - |
0.4548 | 78000 | 0.0001 | - | - | - | - |
0.4607 | 79000 | 0.0001 | - | - | - | - |
0.4665 | 80000 | 0.0001 | 0.0001 | -0.0077 | 0.6323 | - |
0.4723 | 81000 | 0.0001 | - | - | - | - |
0.4782 | 82000 | 0.0001 | - | - | - | - |
0.4840 | 83000 | 0.0001 | - | - | - | - |
0.4898 | 84000 | 0.0001 | - | - | - | - |
0.4957 | 85000 | 0.0001 | 0.0001 | -0.0076 | 0.6316 | - |
0.5015 | 86000 | 0.0001 | - | - | - | - |
0.5073 | 87000 | 0.0001 | - | - | - | - |
0.5132 | 88000 | 0.0001 | - | - | - | - |
0.5190 | 89000 | 0.0001 | - | - | - | - |
0.5248 | 90000 | 0.0001 | 0.0001 | -0.0074 | 0.6306 | - |
0.5307 | 91000 | 0.0001 | - | - | - | - |
0.5365 | 92000 | 0.0001 | - | - | - | - |
0.5423 | 93000 | 0.0001 | - | - | - | - |
0.5481 | 94000 | 0.0001 | - | - | - | - |
0.5540 | 95000 | 0.0001 | 0.0001 | -0.0073 | 0.6305 | - |
0.5598 | 96000 | 0.0001 | - | - | - | - |
0.5656 | 97000 | 0.0001 | - | - | - | - |
0.5715 | 98000 | 0.0001 | - | - | - | - |
0.5773 | 99000 | 0.0001 | - | - | - | - |
0.5831 | 100000 | 0.0001 | 0.0001 | -0.0072 | 0.6333 | - |
0.5890 | 101000 | 0.0001 | - | - | - | - |
0.5948 | 102000 | 0.0001 | - | - | - | - |
0.6006 | 103000 | 0.0001 | - | - | - | - |
0.6065 | 104000 | 0.0001 | - | - | - | - |
0.6123 | 105000 | 0.0001 | 0.0001 | -0.0071 | 0.6351 | - |
0.6181 | 106000 | 0.0001 | - | - | - | - |
0.6240 | 107000 | 0.0001 | - | - | - | - |
0.6298 | 108000 | 0.0001 | - | - | - | - |
0.6356 | 109000 | 0.0001 | - | - | - | - |
0.6415 | 110000 | 0.0001 | 0.0001 | -0.0070 | 0.6330 | - |
0.6473 | 111000 | 0.0001 | - | - | - | - |
0.6531 | 112000 | 0.0001 | - | - | - | - |
0.6589 | 113000 | 0.0001 | - | - | - | - |
0.6648 | 114000 | 0.0001 | - | - | - | - |
0.6706 | 115000 | 0.0001 | 0.0001 | -0.0070 | 0.6336 | - |
0.6764 | 116000 | 0.0001 | - | - | - | - |
0.6823 | 117000 | 0.0001 | - | - | - | - |
0.6881 | 118000 | 0.0001 | - | - | - | - |
0.6939 | 119000 | 0.0001 | - | - | - | - |
0.6998 | 120000 | 0.0001 | 0.0001 | -0.0069 | 0.6305 | - |
0.7056 | 121000 | 0.0001 | - | - | - | - |
0.7114 | 122000 | 0.0001 | - | - | - | - |
0.7173 | 123000 | 0.0001 | - | - | - | - |
0.7231 | 124000 | 0.0001 | - | - | - | - |
0.7289 | 125000 | 0.0001 | 0.0001 | -0.0068 | 0.6362 | - |
0.7348 | 126000 | 0.0001 | - | - | - | - |
0.7406 | 127000 | 0.0001 | - | - | - | - |
0.7464 | 128000 | 0.0001 | - | - | - | - |
0.7522 | 129000 | 0.0001 | - | - | - | - |
0.7581 | 130000 | 0.0001 | 0.0001 | -0.0067 | 0.6340 | - |
0.7639 | 131000 | 0.0001 | - | - | - | - |
0.7697 | 132000 | 0.0001 | - | - | - | - |
0.7756 | 133000 | 0.0001 | - | - | - | - |
0.7814 | 134000 | 0.0001 | - | - | - | - |
0.7872 | 135000 | 0.0001 | 0.0001 | -0.0067 | 0.6365 | - |
0.7931 | 136000 | 0.0001 | - | - | - | - |
0.7989 | 137000 | 0.0001 | - | - | - | - |
0.8047 | 138000 | 0.0001 | - | - | - | - |
0.8106 | 139000 | 0.0001 | - | - | - | - |
0.8164 | 140000 | 0.0001 | 0.0001 | -0.0066 | 0.6339 | - |
0.8222 | 141000 | 0.0001 | - | - | - | - |
0.8281 | 142000 | 0.0001 | - | - | - | - |
0.8339 | 143000 | 0.0001 | - | - | - | - |
0.8397 | 144000 | 0.0001 | - | - | - | - |
0.8456 | 145000 | 0.0001 | 0.0001 | -0.0066 | 0.6352 | - |
0.8514 | 146000 | 0.0001 | - | - | - | - |
0.8572 | 147000 | 0.0001 | - | - | - | - |
0.8630 | 148000 | 0.0001 | - | - | - | - |
0.8689 | 149000 | 0.0001 | - | - | - | - |
0.8747 | 150000 | 0.0001 | 0.0001 | -0.0065 | 0.6357 | - |
0.8805 | 151000 | 0.0001 | - | - | - | - |
0.8864 | 152000 | 0.0001 | - | - | - | - |
0.8922 | 153000 | 0.0001 | - | - | - | - |
0.8980 | 154000 | 0.0001 | - | - | - | - |
0.9039 | 155000 | 0.0001 | 0.0001 | -0.0065 | 0.6336 | - |
0.9097 | 156000 | 0.0001 | - | - | - | - |
0.9155 | 157000 | 0.0001 | - | - | - | - |
0.9214 | 158000 | 0.0001 | - | - | - | - |
0.9272 | 159000 | 0.0001 | - | - | - | - |
0.9330 | 160000 | 0.0001 | 0.0001 | -0.0064 | 0.6334 | - |
0.9389 | 161000 | 0.0001 | - | - | - | - |
0.9447 | 162000 | 0.0001 | - | - | - | - |
0.9505 | 163000 | 0.0001 | - | - | - | - |
0.9563 | 164000 | 0.0001 | - | - | - | - |
0.9622 | 165000 | 0.0001 | 0.0001 | -0.0064 | 0.6337 | - |
0.9680 | 166000 | 0.0001 | - | - | - | - |
0.9738 | 167000 | 0.0001 | - | - | - | - |
0.9797 | 168000 | 0.0001 | - | - | - | - |
0.9855 | 169000 | 0.0001 | - | - | - | - |
0.9913 | 170000 | 0.0001 | 0.0001 | -0.0063 | 0.6347 | - |
0.9972 | 171000 | 0.0001 | - | - | - | - |
1.0 | 171486 | - | - | - | - | 0.5986 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.44.0
- PyTorch: 2.4.0
- Accelerate: 0.33.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MSELoss
@inproceedings{reimers-2020-multilingual-sentence-bert,
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2020",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2004.09813",
}
- Downloads last month
- 9
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for whitemouse84/LaBSE-en-ru-distilled-each-third-layer
Base model
cointegrated/LaBSE-en-ruEvaluation results
- Pearson Cosine on sts devself-reported0.531
- Spearman Cosine on sts devself-reported0.635
- Pearson Manhattan on sts devself-reported0.555
- Spearman Manhattan on sts devself-reported0.639
- Pearson Euclidean on sts devself-reported0.550
- Spearman Euclidean on sts devself-reported0.635
- Pearson Dot on sts devself-reported0.531
- Spearman Dot on sts devself-reported0.635
- Pearson Max on sts devself-reported0.555
- Spearman Max on sts devself-reported0.639