Edit model card

layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3429
  • Answer: {'precision': 0.4732142857142857, 'recall': 0.5896168108776267, 'f1': 0.5250412768299395, 'number': 809}
  • Header: {'precision': 0.3838383838383838, 'recall': 0.31932773109243695, 'f1': 0.34862385321100914, 'number': 119}
  • Question: {'precision': 0.6107784431137725, 'recall': 0.6704225352112676, 'f1': 0.6392121754700089, 'number': 1065}
  • Overall Precision: 0.5400
  • Overall Recall: 0.6167
  • Overall F1: 0.5758
  • Overall Accuracy: 0.6585

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.736 1.0 10 1.4843 {'precision': 0.09492635024549918, 'recall': 0.1433868974042027, 'f1': 0.11422944362383061, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.20766773162939298, 'recall': 0.24413145539906103, 'f1': 0.22442813983599483, 'number': 1065} 0.1520 0.1887 0.1683 0.3955
1.3661 2.0 20 1.2557 {'precision': 0.26396807297605474, 'recall': 0.5723114956736712, 'f1': 0.3612953570035115, 'number': 809} {'precision': 0.3384615384615385, 'recall': 0.18487394957983194, 'f1': 0.23913043478260868, 'number': 119} {'precision': 0.3391768292682927, 'recall': 0.41784037558685444, 'f1': 0.37442153975599496, 'number': 1065} 0.2970 0.4666 0.3630 0.4549
1.182 3.0 30 1.1125 {'precision': 0.2653208363374189, 'recall': 0.45488257107540175, 'f1': 0.3351548269581056, 'number': 809} {'precision': 0.5106382978723404, 'recall': 0.20168067226890757, 'f1': 0.2891566265060241, 'number': 119} {'precision': 0.38895631067961167, 'recall': 0.6018779342723005, 'f1': 0.4725396240324365, 'number': 1065} 0.3352 0.5183 0.4071 0.5618
1.0359 4.0 40 1.0303 {'precision': 0.3092682926829268, 'recall': 0.39184177997527814, 'f1': 0.3456924754634678, 'number': 809} {'precision': 0.3055555555555556, 'recall': 0.2773109243697479, 'f1': 0.2907488986784141, 'number': 119} {'precision': 0.42207792207792205, 'recall': 0.6713615023474179, 'f1': 0.51830373323668, 'number': 1065} 0.3767 0.5344 0.4419 0.6034
0.929 5.0 50 1.1381 {'precision': 0.30710466004583653, 'recall': 0.4969097651421508, 'f1': 0.3796033994334278, 'number': 809} {'precision': 0.35714285714285715, 'recall': 0.25210084033613445, 'f1': 0.29556650246305416, 'number': 119} {'precision': 0.4323086984957489, 'recall': 0.6206572769953052, 'f1': 0.5096376252891287, 'number': 1065} 0.3741 0.5484 0.4448 0.5838
0.8305 6.0 60 1.1595 {'precision': 0.3615506329113924, 'recall': 0.5648949320148331, 'f1': 0.44090689821514706, 'number': 809} {'precision': 0.37333333333333335, 'recall': 0.23529411764705882, 'f1': 0.28865979381443296, 'number': 119} {'precision': 0.5224416517055656, 'recall': 0.5464788732394367, 'f1': 0.5341899954107389, 'number': 1065} 0.4350 0.5354 0.4800 0.5884
0.7288 7.0 70 1.0267 {'precision': 0.4050901378579003, 'recall': 0.4721878862793572, 'f1': 0.4360730593607306, 'number': 809} {'precision': 0.308411214953271, 'recall': 0.2773109243697479, 'f1': 0.29203539823008845, 'number': 119} {'precision': 0.48145604395604397, 'recall': 0.6582159624413145, 'f1': 0.5561285204284014, 'number': 1065} 0.4453 0.5600 0.4961 0.6406
0.6547 8.0 80 1.0727 {'precision': 0.41427247451343835, 'recall': 0.5525339925834364, 'f1': 0.47351694915254233, 'number': 809} {'precision': 0.36046511627906974, 'recall': 0.2605042016806723, 'f1': 0.30243902439024395, 'number': 119} {'precision': 0.49452154857560265, 'recall': 0.6356807511737089, 'f1': 0.5562859490550535, 'number': 1065} 0.4558 0.5795 0.5103 0.6323
0.6 9.0 90 1.0490 {'precision': 0.4189723320158103, 'recall': 0.5241038318912238, 'f1': 0.4656781987918726, 'number': 809} {'precision': 0.2972972972972973, 'recall': 0.2773109243697479, 'f1': 0.28695652173913044, 'number': 119} {'precision': 0.5518341307814992, 'recall': 0.6497652582159624, 'f1': 0.5968089693833549, 'number': 1065} 0.4834 0.5765 0.5259 0.6329
0.5657 10.0 100 1.1953 {'precision': 0.40772200772200773, 'recall': 0.6526576019777504, 'f1': 0.5019011406844107, 'number': 809} {'precision': 0.41333333333333333, 'recall': 0.2605042016806723, 'f1': 0.3195876288659794, 'number': 119} {'precision': 0.5609540636042403, 'recall': 0.596244131455399, 'f1': 0.5780609922621757, 'number': 1065} 0.4772 0.5991 0.5313 0.6268
0.4991 11.0 110 1.1014 {'precision': 0.4277056277056277, 'recall': 0.6106304079110012, 'f1': 0.5030549898167006, 'number': 809} {'precision': 0.3763440860215054, 'recall': 0.29411764705882354, 'f1': 0.33018867924528306, 'number': 119} {'precision': 0.5501730103806228, 'recall': 0.5971830985915493, 'f1': 0.5727149932462855, 'number': 1065} 0.4846 0.5845 0.5299 0.6306
0.4602 12.0 120 1.1289 {'precision': 0.45584988962472406, 'recall': 0.5105067985166872, 'f1': 0.4816326530612245, 'number': 809} {'precision': 0.2846153846153846, 'recall': 0.31092436974789917, 'f1': 0.29718875502008035, 'number': 119} {'precision': 0.5492857142857143, 'recall': 0.7220657276995305, 'f1': 0.6239350912778904, 'number': 1065} 0.5004 0.6116 0.5505 0.6382
0.4175 13.0 130 1.2651 {'precision': 0.467502850627138, 'recall': 0.5067985166872683, 'f1': 0.4863582443653618, 'number': 809} {'precision': 0.3114754098360656, 'recall': 0.31932773109243695, 'f1': 0.3153526970954357, 'number': 119} {'precision': 0.5882352941176471, 'recall': 0.6948356807511737, 'f1': 0.6371071889797676, 'number': 1065} 0.5264 0.5961 0.5591 0.6272
0.3663 14.0 140 1.2097 {'precision': 0.4597918637653737, 'recall': 0.6007416563658838, 'f1': 0.5209003215434083, 'number': 809} {'precision': 0.2962962962962963, 'recall': 0.2689075630252101, 'f1': 0.28193832599118945, 'number': 119} {'precision': 0.5774533657745337, 'recall': 0.6685446009389672, 'f1': 0.6196692776327242, 'number': 1065} 0.5129 0.6172 0.5602 0.6399
0.3358 15.0 150 1.2039 {'precision': 0.4482758620689655, 'recall': 0.5945611866501854, 'f1': 0.5111583421891605, 'number': 809} {'precision': 0.3522727272727273, 'recall': 0.2605042016806723, 'f1': 0.29951690821256044, 'number': 119} {'precision': 0.5680131904369332, 'recall': 0.6469483568075117, 'f1': 0.6049165935030728, 'number': 1065} 0.5059 0.6026 0.5500 0.6425
0.3061 16.0 160 1.2335 {'precision': 0.46646942800788954, 'recall': 0.584672435105068, 'f1': 0.5189248491497532, 'number': 809} {'precision': 0.3780487804878049, 'recall': 0.2605042016806723, 'f1': 0.30845771144278605, 'number': 119} {'precision': 0.586352148272957, 'recall': 0.6535211267605634, 'f1': 0.6181172291296625, 'number': 1065} 0.5256 0.6021 0.5613 0.6572
0.2758 17.0 170 1.2667 {'precision': 0.47320525783619816, 'recall': 0.5784919653893696, 'f1': 0.5205784204671858, 'number': 809} {'precision': 0.35135135135135137, 'recall': 0.3277310924369748, 'f1': 0.3391304347826087, 'number': 119} {'precision': 0.6026431718061674, 'recall': 0.6422535211267606, 'f1': 0.6218181818181818, 'number': 1065} 0.5329 0.5976 0.5634 0.6511
0.2599 18.0 180 1.2470 {'precision': 0.467280163599182, 'recall': 0.5648949320148331, 'f1': 0.5114717403469503, 'number': 809} {'precision': 0.38144329896907214, 'recall': 0.31092436974789917, 'f1': 0.34259259259259256, 'number': 119} {'precision': 0.5965770171149144, 'recall': 0.6873239436619718, 'f1': 0.6387434554973822, 'number': 1065} 0.5326 0.6152 0.5709 0.6569
0.2519 19.0 190 1.3156 {'precision': 0.48720472440944884, 'recall': 0.6118665018541409, 'f1': 0.5424657534246575, 'number': 809} {'precision': 0.37755102040816324, 'recall': 0.31092436974789917, 'f1': 0.3410138248847926, 'number': 119} {'precision': 0.5979557069846678, 'recall': 0.6591549295774648, 'f1': 0.6270656543099598, 'number': 1065} 0.5393 0.6192 0.5765 0.6572
0.2372 20.0 200 1.2986 {'precision': 0.4742967992240543, 'recall': 0.6044499381953028, 'f1': 0.5315217391304348, 'number': 809} {'precision': 0.3333333333333333, 'recall': 0.3277310924369748, 'f1': 0.3305084745762712, 'number': 119} {'precision': 0.6078098471986417, 'recall': 0.672300469483568, 'f1': 0.6384306732055283, 'number': 1065} 0.5348 0.6242 0.5761 0.6582
0.2123 21.0 210 1.3440 {'precision': 0.4794238683127572, 'recall': 0.5760197775030902, 'f1': 0.523301516002246, 'number': 809} {'precision': 0.4117647058823529, 'recall': 0.35294117647058826, 'f1': 0.3800904977375566, 'number': 119} {'precision': 0.6082830025884383, 'recall': 0.6619718309859155, 'f1': 0.6339928057553956, 'number': 1065} 0.5432 0.6086 0.5741 0.6528
0.219 22.0 220 1.3150 {'precision': 0.48422090729783035, 'recall': 0.6069221260815822, 'f1': 0.5386725178277565, 'number': 809} {'precision': 0.37383177570093457, 'recall': 0.33613445378151263, 'f1': 0.3539823008849558, 'number': 119} {'precision': 0.5941666666666666, 'recall': 0.6694835680751173, 'f1': 0.6295805739514349, 'number': 1065} 0.5360 0.6242 0.5767 0.6548
0.2011 23.0 230 1.3252 {'precision': 0.474559686888454, 'recall': 0.5995055624227441, 'f1': 0.5297651556526488, 'number': 809} {'precision': 0.37, 'recall': 0.31092436974789917, 'f1': 0.3378995433789954, 'number': 119} {'precision': 0.5970915312232677, 'recall': 0.6553990610328638, 'f1': 0.6248880931065354, 'number': 1065} 0.5325 0.6121 0.5696 0.6469
0.1942 24.0 240 1.3343 {'precision': 0.4917864476386037, 'recall': 0.5920889987639061, 'f1': 0.5372966909702749, 'number': 809} {'precision': 0.3925233644859813, 'recall': 0.35294117647058826, 'f1': 0.37168141592920356, 'number': 119} {'precision': 0.5986733001658375, 'recall': 0.6779342723004694, 'f1': 0.6358432408630559, 'number': 1065} 0.5435 0.6237 0.5808 0.6583
0.1963 25.0 250 1.3429 {'precision': 0.4732142857142857, 'recall': 0.5896168108776267, 'f1': 0.5250412768299395, 'number': 809} {'precision': 0.3838383838383838, 'recall': 0.31932773109243695, 'f1': 0.34862385321100914, 'number': 119} {'precision': 0.6107784431137725, 'recall': 0.6704225352112676, 'f1': 0.6392121754700089, 'number': 1065} 0.5400 0.6167 0.5758 0.6585

Framework versions

  • Transformers 4.39.0
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
13
Safetensors
Model size
113M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for whiz4kid/layoutlm-funsd

Finetuned
(136)
this model