Edit model card

XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Classical Chinese

This model is part of our paper called:

  • Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages

Check the Space for more details.

Usage

from transformers import AutoTokenizer, AutoModelForTokenClassification

tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-lzh")
model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-lzh")
Downloads last month
12
Safetensors
Model size
277M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train wietsedv/xlm-roberta-base-ft-udpos28-lzh

Space using wietsedv/xlm-roberta-base-ft-udpos28-lzh 1

Evaluation results

  • English Test accuracy on Universal Dependencies v2.8
    self-reported
    33.600
  • Dutch Test accuracy on Universal Dependencies v2.8
    self-reported
    30.900
  • German Test accuracy on Universal Dependencies v2.8
    self-reported
    31.100
  • Italian Test accuracy on Universal Dependencies v2.8
    self-reported
    31.100
  • French Test accuracy on Universal Dependencies v2.8
    self-reported
    30.300
  • Spanish Test accuracy on Universal Dependencies v2.8
    self-reported
    30.600
  • Russian Test accuracy on Universal Dependencies v2.8
    self-reported
    37.100
  • Swedish Test accuracy on Universal Dependencies v2.8
    self-reported
    35.600
  • Norwegian Test accuracy on Universal Dependencies v2.8
    self-reported
    32.700
  • Danish Test accuracy on Universal Dependencies v2.8
    self-reported
    35.000