File size: 9,388 Bytes
ac4452d 3747fe9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 |
---
language:
- lzh
license: apache-2.0
library_name: transformers
tags:
- part-of-speech
- token-classification
datasets:
- universal_dependencies
metrics:
- accuracy
model-index:
- name: xlm-roberta-base-ft-udpos28-lzh
results:
- task:
type: token-classification
name: Part-of-Speech Tagging
dataset:
type: universal_dependencies
name: Universal Dependencies v2.8
metrics:
- type: accuracy
name: English Test accuracy
value: 33.6
- type: accuracy
name: Dutch Test accuracy
value: 30.9
- type: accuracy
name: German Test accuracy
value: 31.1
- type: accuracy
name: Italian Test accuracy
value: 31.1
- type: accuracy
name: French Test accuracy
value: 30.3
- type: accuracy
name: Spanish Test accuracy
value: 30.6
- type: accuracy
name: Russian Test accuracy
value: 37.1
- type: accuracy
name: Swedish Test accuracy
value: 35.6
- type: accuracy
name: Norwegian Test accuracy
value: 32.7
- type: accuracy
name: Danish Test accuracy
value: 35.0
- type: accuracy
name: Low Saxon Test accuracy
value: 19.0
- type: accuracy
name: Akkadian Test accuracy
value: 25.9
- type: accuracy
name: Armenian Test accuracy
value: 40.9
- type: accuracy
name: Welsh Test accuracy
value: 27.3
- type: accuracy
name: Old East Slavic Test accuracy
value: 36.4
- type: accuracy
name: Albanian Test accuracy
value: 31.6
- type: accuracy
name: Slovenian Test accuracy
value: 31.1
- type: accuracy
name: Guajajara Test accuracy
value: 13.9
- type: accuracy
name: Kurmanji Test accuracy
value: 36.5
- type: accuracy
name: Turkish Test accuracy
value: 42.7
- type: accuracy
name: Finnish Test accuracy
value: 45.0
- type: accuracy
name: Indonesian Test accuracy
value: 40.6
- type: accuracy
name: Ukrainian Test accuracy
value: 36.0
- type: accuracy
name: Polish Test accuracy
value: 35.3
- type: accuracy
name: Portuguese Test accuracy
value: 34.8
- type: accuracy
name: Kazakh Test accuracy
value: 45.4
- type: accuracy
name: Latin Test accuracy
value: 37.9
- type: accuracy
name: Old French Test accuracy
value: 33.4
- type: accuracy
name: Buryat Test accuracy
value: 27.2
- type: accuracy
name: Kaapor Test accuracy
value: 19.6
- type: accuracy
name: Korean Test accuracy
value: 44.8
- type: accuracy
name: Estonian Test accuracy
value: 41.4
- type: accuracy
name: Croatian Test accuracy
value: 34.2
- type: accuracy
name: Gothic Test accuracy
value: 12.3
- type: accuracy
name: Swiss German Test accuracy
value: 18.1
- type: accuracy
name: Assyrian Test accuracy
value: 3.5
- type: accuracy
name: North Sami Test accuracy
value: 8.9
- type: accuracy
name: Naija Test accuracy
value: 25.4
- type: accuracy
name: Latvian Test accuracy
value: 45.0
- type: accuracy
name: Chinese Test accuracy
value: 53.2
- type: accuracy
name: Tagalog Test accuracy
value: 34.0
- type: accuracy
name: Bambara Test accuracy
value: 13.9
- type: accuracy
name: Lithuanian Test accuracy
value: 44.0
- type: accuracy
name: Galician Test accuracy
value: 29.0
- type: accuracy
name: Vietnamese Test accuracy
value: 40.9
- type: accuracy
name: Greek Test accuracy
value: 31.3
- type: accuracy
name: Catalan Test accuracy
value: 29.6
- type: accuracy
name: Czech Test accuracy
value: 35.4
- type: accuracy
name: Erzya Test accuracy
value: 9.6
- type: accuracy
name: Bhojpuri Test accuracy
value: 22.9
- type: accuracy
name: Thai Test accuracy
value: 51.6
- type: accuracy
name: Marathi Test accuracy
value: 36.8
- type: accuracy
name: Basque Test accuracy
value: 42.1
- type: accuracy
name: Slovak Test accuracy
value: 36.3
- type: accuracy
name: Kiche Test accuracy
value: 11.9
- type: accuracy
name: Yoruba Test accuracy
value: 10.9
- type: accuracy
name: Warlpiri Test accuracy
value: 15.0
- type: accuracy
name: Tamil Test accuracy
value: 53.4
- type: accuracy
name: Maltese Test accuracy
value: 9.4
- type: accuracy
name: Ancient Greek Test accuracy
value: 31.9
- type: accuracy
name: Icelandic Test accuracy
value: 38.4
- type: accuracy
name: Mbya Guarani Test accuracy
value: 7.1
- type: accuracy
name: Urdu Test accuracy
value: 33.4
- type: accuracy
name: Romanian Test accuracy
value: 33.5
- type: accuracy
name: Persian Test accuracy
value: 35.2
- type: accuracy
name: Apurina Test accuracy
value: 11.9
- type: accuracy
name: Japanese Test accuracy
value: 39.6
- type: accuracy
name: Hungarian Test accuracy
value: 37.2
- type: accuracy
name: Hindi Test accuracy
value: 33.0
- type: accuracy
name: Classical Chinese Test accuracy
value: 88.0
- type: accuracy
name: Komi Permyak Test accuracy
value: 11.3
- type: accuracy
name: Faroese Test accuracy
value: 30.3
- type: accuracy
name: Sanskrit Test accuracy
value: 20.6
- type: accuracy
name: Livvi Test accuracy
value: 29.1
- type: accuracy
name: Arabic Test accuracy
value: 34.9
- type: accuracy
name: Wolof Test accuracy
value: 17.0
- type: accuracy
name: Bulgarian Test accuracy
value: 34.3
- type: accuracy
name: Akuntsu Test accuracy
value: 19.3
- type: accuracy
name: Makurap Test accuracy
value: 21.2
- type: accuracy
name: Kangri Test accuracy
value: 19.8
- type: accuracy
name: Breton Test accuracy
value: 27.4
- type: accuracy
name: Telugu Test accuracy
value: 49.4
- type: accuracy
name: Cantonese Test accuracy
value: 53.7
- type: accuracy
name: Old Church Slavonic Test accuracy
value: 27.9
- type: accuracy
name: Karelian Test accuracy
value: 32.8
- type: accuracy
name: Upper Sorbian Test accuracy
value: 22.1
- type: accuracy
name: South Levantine Arabic Test accuracy
value: 29.8
- type: accuracy
name: Komi Zyrian Test accuracy
value: 9.7
- type: accuracy
name: Irish Test accuracy
value: 29.5
- type: accuracy
name: Nayini Test accuracy
value: 32.1
- type: accuracy
name: Munduruku Test accuracy
value: 14.4
- type: accuracy
name: Manx Test accuracy
value: 16.8
- type: accuracy
name: Skolt Sami Test accuracy
value: 5.3
- type: accuracy
name: Afrikaans Test accuracy
value: 31.8
- type: accuracy
name: Old Turkish Test accuracy
value: 13.6
- type: accuracy
name: Tupinamba Test accuracy
value: 9.4
- type: accuracy
name: Belarusian Test accuracy
value: 36.7
- type: accuracy
name: Serbian Test accuracy
value: 33.9
- type: accuracy
name: Moksha Test accuracy
value: 10.4
- type: accuracy
name: Western Armenian Test accuracy
value: 34.8
- type: accuracy
name: Scottish Gaelic Test accuracy
value: 29.2
- type: accuracy
name: Khunsari Test accuracy
value: 23.0
- type: accuracy
name: Hebrew Test accuracy
value: 44.8
- type: accuracy
name: Uyghur Test accuracy
value: 44.6
- type: accuracy
name: Chukchi Test accuracy
value: 7.0
---
# XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Classical Chinese
This model is part of our paper called:
- Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages
Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details.
## Usage
```python
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-lzh")
model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-lzh")
```
|