File size: 2,671 Bytes
ccea57f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: wav2vec2_common_voice_accents_indian_only_rerun
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2_common_voice_accents_indian_only_rerun
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2807
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 48
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 384
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 588
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 4.6205 | 25.0 | 400 | 1.4584 |
| 0.3427 | 50.0 | 800 | 1.8377 |
| 0.1213 | 75.0 | 1200 | 1.6086 |
| 0.0643 | 100.0 | 1600 | 1.5136 |
| 0.0433 | 125.0 | 2000 | 1.4882 |
| 0.0323 | 150.0 | 2400 | 1.2204 |
| 0.0265 | 175.0 | 2800 | 1.3034 |
| 0.0206 | 200.0 | 3200 | 1.2866 |
| 0.0191 | 225.0 | 3600 | 1.2337 |
| 0.0148 | 250.0 | 4000 | 1.1729 |
| 0.0121 | 275.0 | 4400 | 1.2059 |
| 0.0105 | 300.0 | 4800 | 1.1246 |
| 0.01 | 325.0 | 5200 | 1.1397 |
| 0.0098 | 350.0 | 5600 | 1.1684 |
| 0.0073 | 375.0 | 6000 | 1.1030 |
| 0.0061 | 400.0 | 6400 | 1.2077 |
| 0.0049 | 425.0 | 6800 | 1.2653 |
| 0.0044 | 450.0 | 7200 | 1.1587 |
| 0.0037 | 475.0 | 7600 | 1.2283 |
| 0.0033 | 500.0 | 8000 | 1.1897 |
| 0.0026 | 525.0 | 8400 | 1.2633 |
| 0.0023 | 550.0 | 8800 | 1.2571 |
| 0.002 | 575.0 | 9200 | 1.2807 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.4
- Tokenizers 0.11.6
|