|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- common_voice |
|
model-index: |
|
- name: wav2vec2_common_voice_accents_scotland |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2_common_voice_accents_scotland |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2752 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 48 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 8 |
|
- total_train_batch_size: 384 |
|
- total_eval_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 30 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 4.7171 | 1.28 | 400 | 1.1618 | |
|
| 0.4391 | 2.56 | 800 | 0.2422 | |
|
| 0.2259 | 3.83 | 1200 | 0.2071 | |
|
| 0.1813 | 5.11 | 1600 | 0.2126 | |
|
| 0.1531 | 6.39 | 2000 | 0.2010 | |
|
| 0.1383 | 7.67 | 2400 | 0.2004 | |
|
| 0.13 | 8.95 | 2800 | 0.2069 | |
|
| 0.1193 | 10.22 | 3200 | 0.2081 | |
|
| 0.1124 | 11.5 | 3600 | 0.2051 | |
|
| 0.1023 | 12.78 | 4000 | 0.2175 | |
|
| 0.097 | 14.06 | 4400 | 0.2261 | |
|
| 0.0863 | 15.34 | 4800 | 0.2301 | |
|
| 0.0823 | 16.61 | 5200 | 0.2334 | |
|
| 0.079 | 17.89 | 5600 | 0.2252 | |
|
| 0.0743 | 19.17 | 6000 | 0.2393 | |
|
| 0.0696 | 20.45 | 6400 | 0.2481 | |
|
| 0.0644 | 21.73 | 6800 | 0.2416 | |
|
| 0.064 | 23.0 | 7200 | 0.2449 | |
|
| 0.0584 | 24.28 | 7600 | 0.2660 | |
|
| 0.0544 | 25.56 | 8000 | 0.2630 | |
|
| 0.0523 | 26.84 | 8400 | 0.2677 | |
|
| 0.0494 | 28.12 | 8800 | 0.2730 | |
|
| 0.0462 | 29.39 | 9200 | 0.2752 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.17.0 |
|
- Pytorch 1.10.2+cu102 |
|
- Datasets 1.18.4 |
|
- Tokenizers 0.11.6 |
|
|