File size: 2,640 Bytes
8ac0415 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: wav2vec2_common_voice_accents_us
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2_common_voice_accents_us
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2722
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 48
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 384
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 4.549 | 1.28 | 400 | 0.8521 |
| 0.4066 | 2.56 | 800 | 0.2407 |
| 0.2262 | 3.83 | 1200 | 0.2070 |
| 0.1828 | 5.11 | 1600 | 0.2134 |
| 0.1565 | 6.39 | 2000 | 0.2060 |
| 0.1448 | 7.67 | 2400 | 0.2100 |
| 0.1333 | 8.95 | 2800 | 0.2036 |
| 0.121 | 10.22 | 3200 | 0.2192 |
| 0.1146 | 11.5 | 3600 | 0.2154 |
| 0.1108 | 12.78 | 4000 | 0.2223 |
| 0.1017 | 14.06 | 4400 | 0.2331 |
| 0.094 | 15.34 | 4800 | 0.2257 |
| 0.0896 | 16.61 | 5200 | 0.2229 |
| 0.0825 | 17.89 | 5600 | 0.2229 |
| 0.0777 | 19.17 | 6000 | 0.2417 |
| 0.0719 | 20.45 | 6400 | 0.2433 |
| 0.0659 | 21.73 | 6800 | 0.2447 |
| 0.0651 | 23.0 | 7200 | 0.2446 |
| 0.0587 | 24.28 | 7600 | 0.2542 |
| 0.056 | 25.56 | 8000 | 0.2587 |
| 0.0521 | 26.84 | 8400 | 0.2640 |
| 0.0494 | 28.12 | 8800 | 0.2753 |
| 0.0465 | 29.39 | 9200 | 0.2722 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.4
- Tokenizers 0.11.6
|