update readme
#1
by
winddude
- opened
README.md
CHANGED
@@ -1,3 +1,49 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- winddude/finacial_pharsebank_66agree_split
|
5 |
+
- financial_phrasebank
|
6 |
+
language:
|
7 |
+
- en
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: financial-sentiment-analysis
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Text Classification
|
15 |
+
type: text-classification
|
16 |
+
dataset:
|
17 |
+
name: financial_phrasebank
|
18 |
+
type: financial_phrasebank
|
19 |
+
args: sentences_66agree
|
20 |
+
metrics:
|
21 |
+
- name: Accuracy
|
22 |
+
type: accuracy
|
23 |
+
value: 0.84
|
24 |
+
pipeline_tag: text-classification
|
25 |
+
tags:
|
26 |
+
- finance
|
27 |
+
- sentiment
|
28 |
---
|
29 |
+
|
30 |
+
# Mamba Finacial Headline Sentiment
|
31 |
+
|
32 |
+
Score 0.84 on accuracy for the finacial phrasebank dataset. A completely huggingface capitable implementation of sequence classification with mamba using: <https://github.com/getorca/mamba_for_sequence_classification>.
|
33 |
+
|
34 |
+
## Inference:
|
35 |
+
|
36 |
+
```
|
37 |
+
from transformers import pipeline
|
38 |
+
|
39 |
+
|
40 |
+
model_path = 'winddude/mamba_finacial_phrasebank_sentiment'
|
41 |
+
|
42 |
+
classifier = pipeline("text-classification", model=model_path, trust_remote_code=True)
|
43 |
+
|
44 |
+
text = "Finnish retail software developer Aldata Solution Oyj reported a net loss of 11.7 mln euro $ 17.2 mln for 2007 versus a net profit of 2.5 mln euro $ 3.7 mln for 2006 ."
|
45 |
+
|
46 |
+
classifier(text)
|
47 |
+
```
|
48 |
+
gives:
|
49 |
+
`[{'label': 'NEGATIVE', 'score': 0.8793253302574158}]`
|