Lukas Kuhn
release 0.1
95a71c0
metadata
license: mit
base_model: wndknd/codellama-7b-stata
tags:
  - generated_from_trainer
model-index:
  - name: out
    results: []

Built with Axolotl

See axolotl config

axolotl version: 0.4.0

base_model: wndknd/codellama-7b-stata
tokenizer_type: LlamaTokenizer
is_llama_derived_model: true

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: HuggingFaceH4/CodeAlpaca_20K
    type:
      field_instruction: prompt
      field_output: completion
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./out

sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true

adapter:
lora_model_dir:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:
lora_fan_in_fan_out:

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 1
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
flash_attn_cross_entropy: false
flash_attn_rms_norm: true
flash_attn_fuse_qkv: false
flash_attn_fuse_mlp: true

warmup_steps: 100
evals_per_epoch: 4
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed: #deepspeed_configs/zero2.json # multi-gpu only
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:

out

This model is a fine-tuned version of wndknd/codellama-7b-stata on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5586

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
1.1853 0.0 1 1.0273
0.6457 0.25 104 0.6773
0.6475 0.5 208 0.6700
0.5701 0.75 312 0.5586

Framework versions

  • Transformers 4.37.0
  • Pytorch 2.1.1+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0