Edit model card

autofix10k

This model is a fine-tuned version of codellama/CodeLlama-7b-hf on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4372

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

The following bitsandbytes quantization config was used during training:

  • quant_method: QuantizationMethod.BITS_AND_BYTES
  • _load_in_8bit: True
  • _load_in_4bit: False
  • llm_int8_threshold: 6.0
  • llm_int8_skip_modules: None
  • llm_int8_enable_fp32_cpu_offload: False
  • llm_int8_has_fp16_weight: False
  • bnb_4bit_quant_type: fp4
  • bnb_4bit_use_double_quant: False
  • bnb_4bit_compute_dtype: float32
  • bnb_4bit_quant_storage: uint8
  • load_in_4bit: False
  • load_in_8bit: True

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 1
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
0.7922 0.2 20 0.5237
0.5053 0.4 40 0.4857
0.4071 0.6 60 0.4356
0.4297 0.8 80 0.4154
0.5313 1.0 100 0.3827
0.4814 1.2 120 0.3785
0.3739 1.4 140 0.3774
0.3279 1.6 160 0.3761
0.3149 1.8 180 0.3732
0.4086 2.0 200 0.3658
0.3724 2.2 220 0.3664
0.3691 2.4 240 0.3644
0.3065 2.6 260 0.3679
0.2688 2.8 280 0.3767
0.3431 3.0 300 0.3633
0.333 3.2 320 0.3641
0.3052 3.4 340 0.3597
0.2444 3.6 360 0.3779
0.2455 3.8 380 0.3712
0.3078 4.0 400 0.3578
0.2877 4.2 420 0.3650
0.2659 4.4 440 0.3731
0.2496 4.6 460 0.3764
0.218 4.8 480 0.3781
0.219 5.0 500 0.3742
0.2119 5.2 520 0.3808
0.2435 5.4 540 0.3871
0.2331 5.6 560 0.3818
0.1738 5.8 580 0.3758
0.1772 6.0 600 0.3731
0.1607 6.2 620 0.4121
0.1942 6.4 640 0.3943
0.2312 6.6 660 0.3867
0.1528 6.8 680 0.4160
0.1155 7.0 700 0.4100
0.1495 7.2 720 0.4081
0.1674 7.4 740 0.4015
0.1849 7.6 760 0.4075
0.1231 7.8 780 0.4238
0.0905 8.0 800 0.4128
0.1156 8.2 820 0.4278
0.1628 8.4 840 0.4203
0.1545 8.6 860 0.4219
0.1236 8.8 880 0.4294
0.0799 9.0 900 0.4224
0.0991 9.2 920 0.4399
0.1176 9.4 940 0.4350
0.1711 9.6 960 0.4362
0.1106 9.8 980 0.4414
0.0582 10.0 1000 0.4372

Framework versions

  • PEFT 0.4.0
  • Transformers 4.40.0.dev0
  • Pytorch 2.2.0+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.2
Downloads last month
3
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for wookidoki/autofix10k

Adapter
(245)
this model