File size: 1,745 Bytes
9d88afe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
tags:
- generated_from_trainer
metrics:
- accuracy
- recall
- precision
- f1
model-index:
- name: NL_BERT_michelin_finetuned
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# NL_BERT_michelin_finetuned
This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2675
- Accuracy: 0.968
- Recall: 0.1562
- Precision: 0.5
- F1: 0.2381
- Mse: 0.032
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | F1 | Mse |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:-----:|
| 0.1078 | 1.0 | 125 | 0.2461 | 0.969 | 0.0312 | 1.0 | 0.0606 | 0.031 |
| 0.0258 | 2.0 | 250 | 0.2353 | 0.969 | 0.2188 | 0.5385 | 0.3111 | 0.031 |
| 0.0011 | 3.0 | 375 | 0.2675 | 0.968 | 0.1562 | 0.5 | 0.2381 | 0.032 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.11.0+cu113
- Datasets 2.1.0
- Tokenizers 0.12.1
|