metadata
library_name: transformers
language:
- en
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- wwwtwwwt/fineaudio-Education
metrics:
- wer
model-index:
- name: Whisper Tiny En - Education - Documentaries
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: fineaudio-Education-Documentaries
type: wwwtwwwt/fineaudio-Education
args: 'config: en, split: test'
metrics:
- name: Wer
type: wer
value: 50.27570804593158
Whisper Tiny En - Education - Documentaries
This model is a fine-tuned version of openai/whisper-tiny on the fineaudio-Education-Documentaries dataset. It achieves the following results on the evaluation set:
- Loss: 1.2666
- Wer: 50.2757
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.8091 | 0.8230 | 1000 | 1.3021 | 62.2507 |
0.5487 | 1.6461 | 2000 | 1.2534 | 58.9165 |
0.4782 | 2.4691 | 3000 | 1.2633 | 53.8332 |
0.3527 | 3.2922 | 4000 | 1.2666 | 50.2757 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.4.0
- Datasets 3.3.2
- Tokenizers 0.21.0