metadata
library_name: transformers
language:
- en
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- wwwtwwwt/fineaudio-NewsPolitics
metrics:
- wer
model-index:
- name: Whisper Tiny En - NewsPolitics - Social Commentary
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: fineaudio-NewsPolitics-Social Commentary
type: wwwtwwwt/fineaudio-NewsPolitics
args: 'config: en, split: test'
metrics:
- name: Wer
type: wer
value: 52.65511043774045
Whisper Tiny En - NewsPolitics - Social Commentary
This model is a fine-tuned version of openai/whisper-tiny on the fineaudio-NewsPolitics-Social Commentary dataset. It achieves the following results on the evaluation set:
- Loss: 0.9274
- Wer: 52.6551
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.8927 | 0.5705 | 1000 | 1.0172 | 59.8874 |
0.702 | 1.1409 | 2000 | 0.9510 | 56.5795 |
0.6797 | 1.7114 | 3000 | 0.9338 | 55.1387 |
0.6021 | 2.2818 | 4000 | 0.9274 | 52.6551 |
Framework versions
- Transformers 4.45.2
- Pytorch 2.4.0
- Datasets 3.1.0
- Tokenizers 0.20.0