|
--- |
|
license: mit |
|
datasets: |
|
- glaiveai/glaive-function-calling-v2 |
|
language: |
|
- zh |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
tags: |
|
- function-call |
|
--- |
|
|
|
# Qwen2-7B-Instruct-glaive-function-calling |
|
|
|
## Introduction |
|
基于数据集 glaive-function-calling-v2 在 Qwen2-7B-Instruct 上进行微调而来 |
|
<br> |
|
|
|
## Training details |
|
使用 lora 进行训练 |
|
训练样本如下: |
|
``` |
|
<|im_start|>system |
|
You are a helpful assistant with access to the following functions. Use them if required - |
|
{ |
|
"name": "generate_invoice", |
|
"description": "Generate an invoice with specified details", |
|
"parameters": { |
|
"type": "object", |
|
"properties": { |
|
"customer_name": { |
|
"type": "string", |
|
"description": "The name of the customer" |
|
}, |
|
"items": { |
|
"type": "array", |
|
"items": { |
|
"type": "object", |
|
"properties": { |
|
"name": { |
|
"type": "string", |
|
"description": "The name of the item" |
|
}, |
|
"quantity": { |
|
"type": "integer", |
|
"description": "The quantity of the item" |
|
}, |
|
"price": { |
|
"type": "number", |
|
"description": "The price of the item" |
|
} |
|
}, |
|
"required": [ |
|
"name", |
|
"quantity", |
|
"price" |
|
] |
|
} |
|
} |
|
}, |
|
"required": [ |
|
"customer_name", |
|
"items" |
|
] |
|
} |
|
} |
|
<|im_end|> |
|
<|im_start|>user |
|
I need to generate an invoice for a customer named John Doe. He bought 2 apples for $1 each and 3 oranges for $2 each.<|im_end|> |
|
<|im_start|>assistant |
|
<functioncall> {"name": "generate_invoice", "arguments": '{"customer_name": "John Doe", "items": [{"name": "apple", "quantity": 2, "price": 1}, {"name": "orange", "quantity": 3, "price": 2}]}'} <|endoftext|><|im_end|> |
|
<|im_start|>function |
|
{"invoice_id": "INV12345", "customer_name": "John Doe", "items": [{"name": "apple", "quantity": 2, "price": 1, "total": 2}, {"name": "orange", "quantity": 3, "price": 2, "total": 6}], "total": 8, "status": "Generated"}<|im_end|> |
|
<|im_start|>assistant |
|
The invoice has been successfully generated. The invoice ID is INV12345. The total amount for 2 apples and 3 oranges is $8. <|endoftext|><|im_end|> |
|
``` |
|
|
|
|
|
## Quickstart |
|
|
|
> 参考 Qwen2-7B-Instruct |
|
|
|
Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents. |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
device = "cuda" # the device to load the model onto |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
"Qwen/Qwen2-7B-Instruct", |
|
torch_dtype="auto", |
|
device_map="auto" |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-7B-Instruct") |
|
|
|
prompt = "Give me a short introduction to large language model." |
|
messages = [ |
|
{"role": "system", "content": "You are a helpful assistant."}, |
|
{"role": "user", "content": prompt} |
|
] |
|
text = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
model_inputs = tokenizer([text], return_tensors="pt").to(device) |
|
|
|
generated_ids = model.generate( |
|
model_inputs.input_ids, |
|
max_new_tokens=512 |
|
) |
|
generated_ids = [ |
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) |
|
] |
|
|
|
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
``` |