Edit model card

basic_train_basic_test 1000 similar params: per_device_train_batch_size=32, # bylo 16 a pod tim 1 gradient_accumulation_steps=2, warmup_steps=300, max_steps=3000

This model is a fine-tuned version of openai/whisper-small on the xbilek25/xbilek25/train_set_1000_en_de_en dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2957
  • Wer: 10.8108

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 3000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0087 7.02 500 0.2377 11.3924
0.0024 15.02 1000 0.2643 11.8029
0.0006 23.02 1500 0.2832 10.8792
0.0004 31.02 2000 0.2901 10.6055
0.0003 39.01 2500 0.2941 10.7766
0.0003 47.01 3000 0.2957 10.8108

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.15.2
Downloads last month
3
Safetensors
Model size
242M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for xbilek25/whisper-small-train-v2.2

Finetuned
(1860)
this model

Dataset used to train xbilek25/whisper-small-train-v2.2

Evaluation results

  • Wer on xbilek25/xbilek25/train_set_1000_en_de_en
    self-reported
    10.811