Whisper basque fine-tuning
Collection
This collections contains Whisper fine-tuned models on basque speech datasets
•
8 items
•
Updated
This is a CTranslate2 conversion of xezpeleta/whisper-medium-eu designed for use with faster-whisper.
asierhv/composite_corpus_eu_v2.1
(Mozilla Common Voice 18.0 + Basque Parliament + OpenSLR)First install required packages:
pip install faster-whisper
Then use the following code snippet:
from faster_whisper import WhisperModel
# Load the model (FP16 precision)
model = WhisperModel("xezpeleta/whisper-medium-eu-ct2", device="cuda", compute_type="float16")
# Transcribe audio file
segments, info = model.transcribe("audio.mp3", language="eu")
# Print transcription
for segment in segments:
print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))
The model achieves 8.33% Word Error Rate (WER) on the Basque test
split of Mozilla Common Voice 17.0.
Converted from the original HuggingFace model using:
ct2-transformers-converter --model xezpeleta/whisper-medium-eu \
--output_dir whisper-medium-eu-ct2 \
--copy_files tokenizer.json preprocessor_config.json \
--quantization float16