whisper-medium-eu / README.md
xezpeleta's picture
update model card README.md
8a9eeb7
|
raw
history blame
2.78 kB
metadata
language:
  - eu
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_13_0
metrics:
  - wer
model-index:
  - name: Whisper Small Basque
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: mozilla-foundation/common_voice_13_0 eu
          type: mozilla-foundation/common_voice_13_0
          config: eu
          split: test
          args: eu
        metrics:
          - name: Wer
            type: wer
            value: 14.119648426424725

Whisper Small Basque

This model is a fine-tuned version of openai/whisper-medium on the mozilla-foundation/common_voice_13_0 eu dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2376
  • Wer: 14.1196

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-06
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 8000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.443 0.06 500 0.5037 37.4296
0.4196 0.12 1000 0.4010 28.9137
0.2823 0.19 1500 0.3453 24.6851
0.2551 0.25 2000 0.3164 22.5789
0.206 0.31 2500 0.2902 19.7922
0.2327 0.38 3000 0.2707 18.9356
0.1416 1.03 3500 0.2566 17.6921
0.0998 1.09 4000 0.2551 16.8213
0.095 1.15 4500 0.2511 16.3899
0.0971 1.21 5000 0.2415 15.5393
0.0964 1.28 5500 0.2336 15.1707
0.072 1.34 6000 0.2353 14.7596
0.0658 1.4 6500 0.2340 14.6766
0.033 2.05 7000 0.2349 14.3768
0.0288 2.11 7500 0.2371 14.1865
0.0352 2.18 8000 0.2376 14.1196

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.1+cu117
  • Datasets 2.8.1.dev0
  • Tokenizers 0.13.2