deepspeed / amlt_configs /train-sca-ablat-lsj-scale_lr-110423.yaml
xingzhikb's picture
init
002bd9b
env_defaults:
# NOTE: this kind of string leaded by > will append a new line to the end of the string
SHARED_CMD_ARGS: >-
-m src.train
+model=base_sca_multitask_v2
training.do_train=True
training.do_eval=True
training.do_inference=True
+data.streaming=False
training.max_eval_samples=800
training.max_steps=200000
training.fp16=True
training.output_dir=$AMLT_OUTPUT_DIR
training.output_log_dir=$AMLT_LOGS_DIR
model.cache_dir=/mnt/blob/weights/.model.cache/
training.save_strategy=steps
training.save_steps=5000
training.save_total_limit=3
training.optim=adamw_torch
training.evaluate_before_train=True
training.per_device_train_batch_size=1
training.evaluation_strategy=steps
training.eval_steps=5000
training.logging_steps=1000
training.logging_first_step=True
training.dataloader_num_workers=4
training.num_masks_per_sample=16
wandb.project=$AMLT_EXPERIMENT_NAME
wandb.name=$AMLT_JOB_NAME
model.num_caption_tokens=8
model.additional_num_hidden_layers=12
model.num_task_tokens=6
training.lr_scheduler_type=cosine
model.lm_head_model_name_or_path=gpt2-large
training.learning_rate=1e-4
training.weight_decay=1e-4
training.warmup_steps=200
training.warmup_ratio=0.33333333
training.compute_metrics=True
environment:
image: nvidia/pytorch:23.07-py3 # NCCL on PHLRR4076 cannot initialized successfully
# image: nvidia/pytorch:23.06-py3 # NCCL on PHLRR4076 cannot initialized successfully
# image: nvidia/pytorch:22.12-py3 # Pydantic has bug: https://github.com/pydantic/pydantic/issues/545#issuecomment-1573776471 pip install pydantic==1.10.8; not support adamw_torch_fused, as it requires PyTorch 2.0 or higher
registry: nvcr.io
code:
local_dir: $CONFIG_DIR/../
jobs:
- name: gpt2-large
preemptible: True
sku: ${NUM_NODES}xG${NUM_GPUS}
process_count_per_node: 1 # Each node should run 1 process
command:
- . amlt_configs/setup.sh
- source ~/.bashrc
- . amlt_configs/setup_accelerate_on_azure.sh
- >-
accelerate launch --config_file amlt_configs/accelerate_deepspeed_config.yaml
$SHARED_CMD_ARGS
train_data='[vg-densecap-local]'
eval_data='[vg-densecap-local]'
model.lm_head_model_name_or_path=gpt2-large
$EXTRA_ARGS
submit_args:
env:
SHARED_MEMORY_PERCENT: 0.5
HYDRA_FULL_ERROR: 1
container_args:
shm_size: 256g
- name: open_llama_3b_v2
preemptible: True
sku: ${NUM_NODES}xG${NUM_GPUS}
process_count_per_node: 1 # Each node should run 1 process
command:
- . amlt_configs/setup.sh
- source ~/.bashrc
- . amlt_configs/setup_accelerate_on_azure.sh
- >-
accelerate launch --config_file amlt_configs/accelerate_deepspeed_config.yaml
$SHARED_CMD_ARGS
train_data='[vg-densecap-local]'
eval_data='[vg-densecap-local]'
model.lm_head_model_name_or_path=openlm-research/open_llama_3b_v2
training.gradient_checkpointing=true
$EXTRA_ARGS
submit_args:
env:
SHARED_MEMORY_PERCENT: 0.5
HYDRA_FULL_ERROR: 1
container_args:
shm_size: 256g
# sing resrch 1x8 no-pre lsj
# amlt run -d "" --extra-args "+data_transforms=lsj-0_1-2_0" -t msrresrchvc -w msrresrchws --sku=G8-V100 --no-pre amlt_configs/train-sca-ablat-lsj-scale_lr-110423.yaml :1=`date +"%m%d%y"`.resrch-1x8-v100-16g-no_pre.ollm3bv2-large-lsj train-sca-ablat-lsj-scale_lr-110423
# amlt run -d "" --extra-args "+data_transforms=lsj-0_1-2_0" -t msrresrchvc -w msrresrchws --sku=G8-V100 --no-pre amlt_configs/train-sca-ablat-lsj-scale_lr-110423.yaml :0=`date +"%m%d%y"`.resrch-1x8-v100-16g-no_pre.gpt2-large-lsj train-sca-ablat-lsj-scale_lr-110423
# sing octo 4x8 no-pre lsj
# amlt run -d "" --extra-args "+data_transforms=lsj-0_1-2_0 training.learning_rate=4e-4" -t msroctovc -w msroctows --sku=4xG8-V100 --no-pre amlt_configs/train-sca-ablat-lsj-scale_lr-110423.yaml :1=`date +"%m%d%y"`.octo-4x8-v100-16g-no_pre.ollm3bv2-large-lsj-1xlr train-sca-ablat-lsj-scale_lr-110423
# amlt run -d "" --extra-args "+data_transforms=lsj-0_1-2_0 training.learning_rate=4e-4" -t msroctovc -w msroctows --sku=4xG8-V100 --no-pre amlt_configs/train-sca-ablat-lsj-scale_lr-110423.yaml :0=`date +"%m%d%y"`.octo-4x8-v100-16g-no_pre.gpt2-large-lsj-1xlr train-sca-ablat-lsj-scale_lr-110423
# The maximum scale lr with BS 64: 8e-4 (too big to achieve better)
# amlt run -d "" --extra-args "+data_transforms=lsj-0_1-2_0 training.learning_rate=8e-4" -t msrresrchvc -w msrresrchws --sku=16xG4-V100-IB --pre amlt_configs/train-sca-ablat-lsj-scale_lr-110423.yaml :1=`date +"%m%d%y"`.resrch-16x4-v100-16g-pre.ollm3bv2-large-lsj-1xlr train-sca-ablat-lsj-scale_lr-110423
# amlt run -d "" --extra-args "+data_transforms=lsj-0_1-2_0 training.learning_rate=8e-4" -t msrresrchvc -w msrresrchws --sku=16xG4-V100-IB --pre amlt_configs/train-sca-ablat-lsj-scale_lr-110423.yaml :0=`date +"%m%d%y"`.resrch-16x4-v100-16g-no_pre.gpt2-large-lsj-1xlr train-sca-ablat-lsj-scale_lr-110423
# The maximum scale lr with BS 64: 4e-4 (try to achieve better with that from BS 32)
# amlt run -d "" --extra-args "+data_transforms=lsj-0_1-2_0 training.learning_rate=4e-4" -t msrresrchvc -w msrresrchws --sku=16xG4-V100-IB --pre amlt_configs/train-sca-ablat-lsj-scale_lr-110423.yaml :1=`date +"%m%d%y"`.resrch-16x4-v100-16g-pre.ollm3bv2-large-lsj-1xlr-4e_4 train-sca-ablat-lsj-scale_lr-110423
# amlt run -d "" --extra-args "+data_transforms=lsj-0_1-2_0 training.learning_rate=4e-4" -t msrresrchvc -w msrresrchws --sku=16xG4-V100-IB --pre amlt_configs/train-sca-ablat-lsj-scale_lr-110423.yaml :0=`date +"%m%d%y"`.resrch-16x4-v100-16g-no_pre.gpt2-large-lsj-1xlr-4e_4 train-sca-ablat-lsj-scale_lr-110423
# 1x8, 4e-4
# amlt run -d "" --extra-args "+data_transforms=lsj-0_1-2_0 training.learning_rate=4e-4" -t itplabrr1cl1 -w resrchvc --sku=G8-V100 --pre amlt_configs/train-sca-ablat-lsj-scale_lr-110423.yaml :1=`date +"%m%d%y"`.rr1-1x8-v100-16g-pre.ollm3bv2-large-lsj-4e_4 train-sca-ablat-lsj-scale_lr-110423
# amlt run -d "" --extra-args "+data_transforms=lsj-0_1-2_0 training.learning_rate=4e-4" -t itplabrr1cl1 -w resrchvc --sku=G8-V100 --pre amlt_configs/train-sca-ablat-lsj-scale_lr-110423.yaml :0=`date +"%m%d%y"`.rr1-1x8-v100-16g-pre.gpt2-large-lsj-4e_4 train-sca-ablat-lsj-scale_lr-110423
# The maximum scale lr with BS 64: 4e-4 (try to achieve better with that from BS 32)
# amlt run -d "" --extra-args "+data_transforms=lsj-0_1-2_0 training.learning_rate=4e-4" -t msrresrchvc -w msrresrchws --sku=16xG4-V100-IB --pre amlt_configs/train-sca-ablat-lsj-scale_lr-110423.yaml :1=`date +"%m%d%y"`.resrch-16x4-v100-16g-pre.ollm3bv2-large-lsj-1xlr-4e_4 train-sca-ablat-lsj-scale_lr-110423
# amlt run -d "" --extra-args "+data_transforms=lsj-0_1-2_0 training.learning_rate=4e-4" -t msrresrchvc -w msrresrchws --sku=16xG4-V100-IB --pre amlt_configs/train-sca-ablat-lsj-scale_lr-110423.yaml :0=`date +"%m%d%y"`.resrch-16x4-v100-16g-no_pre.gpt2-large-lsj-1xlr-4e_4 train-sca-ablat-lsj-scale_lr-110423