SentenceTransformer based on Alibaba-NLP/gte-multilingual-base for Persian (Farsi)

This is a sentence-transformers model finetuned from Alibaba-NLP/gte-multilingual-base. It maps Persian (Farsi) sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more in the Persian language.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Alibaba-NLP/gte-multilingual-base
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Training Dataset: 2000 high-quality Persian sentence pairs translated from English using GPT-4
  • Language: Persian (Farsi)

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("xmanii/maux-gte-persian")
# Run inference
sentences = [
    'شخصیت\u200cهای اصلی در جنبش کوبیسم چه کسانی بودند؟',
    'لئوناردو داوینچی به خاطر مشارکت\u200cهایش در رنسانس شناخته می\u200cشود، نه کوبیسم.',
    'شخصیت\u200cهای اصلی در جنبش کوبیسم چه کسانی بودند؟',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • learning_rate: 2e-05
  • warmup_ratio: 0.1
  • fp16: True

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
869
Safetensors
Model size
305M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for xmanii/maux-gte-persian

Finetuned
(35)
this model