|
--- |
|
base_model: ai-forever/ruT5-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
- bleu |
|
model-index: |
|
- name: skilltext |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# skilltext |
|
|
|
This model is a fine-tuned version of [ai-forever/ruT5-base](https://huggingface.co/ai-forever/ruT5-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.1336 |
|
- Rouge1: 36.6977 |
|
- Rouge2: 18.3675 |
|
- Rougel: 33.39 |
|
- Rougelsum: 33.228 |
|
- Bleu: 1.5692 |
|
- Gen Len: 18.75 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 30 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleu | Gen Len | |
|
|:-------------:|:-------:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:------:|:-------:| |
|
| No log | 0.8065 | 50 | 1.9354 | 16.2951 | 4.8512 | 15.4376 | 15.441 | 0.6506 | 19.0 | |
|
| No log | 1.6129 | 100 | 1.6656 | 19.5019 | 7.2001 | 18.8027 | 18.7638 | 0.594 | 19.0 | |
|
| No log | 2.4194 | 150 | 1.5313 | 26.0869 | 11.2464 | 24.6085 | 24.0936 | 0.7185 | 18.4375 | |
|
| No log | 3.2258 | 200 | 1.3688 | 26.6556 | 10.2516 | 25.4266 | 25.2205 | 0.8019 | 18.9375 | |
|
| No log | 4.0323 | 250 | 1.3278 | 30.3107 | 16.1963 | 29.45 | 29.3516 | 0.9436 | 18.6875 | |
|
| No log | 4.8387 | 300 | 1.2528 | 29.4018 | 13.6013 | 28.5142 | 28.3839 | 0.8982 | 18.8125 | |
|
| No log | 5.6452 | 350 | 1.1710 | 30.4376 | 15.8148 | 28.1455 | 28.1251 | 1.0094 | 18.5625 | |
|
| No log | 6.4516 | 400 | 1.1587 | 32.0952 | 15.6704 | 29.448 | 29.2287 | 0.9544 | 18.75 | |
|
| No log | 7.2581 | 450 | 1.1462 | 34.8699 | 16.6354 | 32.2466 | 32.0099 | 1.1543 | 18.75 | |
|
| 2.1867 | 8.0645 | 500 | 1.1531 | 38.1367 | 19.5983 | 35.6417 | 35.5354 | 1.156 | 18.625 | |
|
| 2.1867 | 8.8710 | 550 | 1.1414 | 38.1785 | 19.9507 | 35.8596 | 35.754 | 1.0002 | 18.4375 | |
|
| 2.1867 | 9.6774 | 600 | 1.1154 | 37.4513 | 20.4127 | 35.0672 | 35.1356 | 1.1571 | 18.375 | |
|
| 2.1867 | 10.4839 | 650 | 1.1313 | 39.9692 | 22.8346 | 37.9243 | 37.8991 | 1.0607 | 18.375 | |
|
| 2.1867 | 11.2903 | 700 | 1.1038 | 41.2595 | 26.6622 | 38.5816 | 38.0719 | 1.4158 | 18.625 | |
|
| 2.1867 | 12.0968 | 750 | 1.1211 | 37.9702 | 20.308 | 35.0885 | 35.0968 | 1.1778 | 18.5625 | |
|
| 2.1867 | 12.9032 | 800 | 1.1093 | 40.779 | 22.5908 | 38.9412 | 38.4138 | 1.4705 | 18.6875 | |
|
| 2.1867 | 13.7097 | 850 | 1.0986 | 39.135 | 22.7832 | 37.1735 | 36.7976 | 1.4786 | 18.625 | |
|
| 2.1867 | 14.5161 | 900 | 1.0948 | 39.023 | 23.3971 | 36.453 | 36.8176 | 1.6583 | 18.5625 | |
|
| 2.1867 | 15.3226 | 950 | 1.0863 | 35.3105 | 20.0898 | 32.9446 | 33.4276 | 1.3792 | 18.625 | |
|
| 0.9823 | 16.1290 | 1000 | 1.0708 | 36.8626 | 20.9323 | 34.8047 | 34.3997 | 1.326 | 18.75 | |
|
| 0.9823 | 16.9355 | 1050 | 1.1206 | 35.2449 | 18.4541 | 33.2371 | 33.1517 | 1.4287 | 18.6875 | |
|
| 0.9823 | 17.7419 | 1100 | 1.0607 | 36.4142 | 19.401 | 33.6263 | 33.3147 | 1.4083 | 18.75 | |
|
| 0.9823 | 18.5484 | 1150 | 1.0700 | 37.1307 | 23.7712 | 36.1994 | 36.4324 | 1.5459 | 18.9375 | |
|
| 0.9823 | 19.3548 | 1200 | 1.1096 | 36.0131 | 20.9223 | 34.8256 | 35.1558 | 1.5597 | 18.9375 | |
|
| 0.9823 | 20.1613 | 1250 | 1.0649 | 37.1102 | 20.5373 | 34.4912 | 34.8616 | 1.5707 | 18.75 | |
|
| 0.9823 | 20.9677 | 1300 | 1.0845 | 36.6058 | 20.0812 | 34.4313 | 34.7778 | 1.4728 | 18.75 | |
|
| 0.9823 | 21.7742 | 1350 | 1.0907 | 36.1128 | 19.5435 | 33.9691 | 33.8883 | 1.5862 | 18.75 | |
|
| 0.9823 | 22.5806 | 1400 | 1.1001 | 35.3522 | 17.4788 | 32.9141 | 32.6285 | 1.6144 | 18.75 | |
|
| 0.9823 | 23.3871 | 1450 | 1.1312 | 37.2085 | 20.9517 | 34.6124 | 34.7443 | 1.5977 | 18.75 | |
|
| 0.717 | 24.1935 | 1500 | 1.1230 | 35.2227 | 19.1712 | 33.0973 | 32.8891 | 1.662 | 18.75 | |
|
| 0.717 | 25.0 | 1550 | 1.1096 | 35.3271 | 18.9454 | 33.1794 | 33.1112 | 1.4402 | 18.75 | |
|
| 0.717 | 25.8065 | 1600 | 1.1325 | 36.9198 | 19.3878 | 34.0516 | 34.1622 | 1.4646 | 18.75 | |
|
| 0.717 | 26.6129 | 1650 | 1.1274 | 37.309 | 19.8905 | 34.6163 | 34.7457 | 1.4478 | 18.75 | |
|
| 0.717 | 27.4194 | 1700 | 1.1375 | 41.3137 | 21.9617 | 39.6297 | 39.1071 | 1.0891 | 18.6875 | |
|
| 0.717 | 28.2258 | 1750 | 1.1307 | 40.4945 | 20.5615 | 38.2536 | 37.6927 | 1.2074 | 18.6875 | |
|
| 0.717 | 29.0323 | 1800 | 1.1371 | 36.6977 | 18.3675 | 33.39 | 33.228 | 1.5783 | 18.75 | |
|
| 0.717 | 29.8387 | 1850 | 1.1336 | 36.6977 | 18.3675 | 33.39 | 33.228 | 1.5692 | 18.75 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.0 |
|
- Pytorch 2.2.2 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.19.1 |
|
|