metadata
base_model: ai-forever/ruT5-base
tags:
- generated_from_trainer
metrics:
- rouge
- bleu
model-index:
- name: skilltext
results: []
skilltext
This model is a fine-tuned version of ai-forever/ruT5-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.0396
- Rouge1: 35.5496
- Rouge2: 22.9927
- Rougel: 33.7986
- Rougelsum: 33.9427
- Bleu: 3.0002
- Gen Len: 18.7273
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleu | Gen Len |
---|---|---|---|---|---|---|---|---|---|
No log | 0.5882 | 50 | 2.0006 | 22.8478 | 9.3528 | 21.5245 | 21.4195 | 1.3965 | 19.0 |
No log | 1.1765 | 100 | 1.5029 | 26.0894 | 12.5184 | 22.7242 | 22.8568 | 1.7386 | 18.9545 |
No log | 1.7647 | 150 | 1.4072 | 24.1385 | 9.8714 | 22.0278 | 22.0679 | 2.009 | 18.9545 |
No log | 2.3529 | 200 | 1.3292 | 27.642 | 12.2998 | 26.3455 | 25.9994 | 1.2632 | 18.7727 |
No log | 2.9412 | 250 | 1.2788 | 32.096 | 12.3806 | 30.9883 | 30.6962 | 1.6429 | 18.7273 |
No log | 3.5294 | 300 | 1.1847 | 31.8602 | 21.2094 | 31.1454 | 30.9145 | 1.5913 | 18.8636 |
No log | 4.1176 | 350 | 1.2193 | 22.6777 | 11.7225 | 22.1941 | 22.1638 | 1.4306 | 18.7727 |
No log | 4.7059 | 400 | 1.1527 | 23.4161 | 11.2979 | 22.9918 | 23.0266 | 1.7552 | 18.8636 |
No log | 5.2941 | 450 | 1.1200 | 28.9205 | 15.5233 | 27.153 | 27.2644 | 1.8557 | 18.7273 |
2.1495 | 5.8824 | 500 | 1.1426 | 28.2199 | 13.8386 | 26.9115 | 26.5472 | 2.3855 | 18.7273 |
2.1495 | 6.4706 | 550 | 1.1053 | 32.432 | 18.9395 | 30.9397 | 31.1198 | 2.2867 | 18.7727 |
2.1495 | 7.0588 | 600 | 1.0777 | 38.285 | 23.5443 | 35.0994 | 35.3165 | 2.6353 | 18.7727 |
2.1495 | 7.6471 | 650 | 1.0900 | 38.5934 | 21.6941 | 36.5629 | 36.9151 | 2.2212 | 18.7727 |
2.1495 | 8.2353 | 700 | 1.0931 | 41.2586 | 27.5923 | 40.1612 | 40.1672 | 2.5568 | 18.8182 |
2.1495 | 8.8235 | 750 | 1.0691 | 38.3785 | 25.0231 | 38.453 | 38.5248 | 2.4491 | 18.7273 |
2.1495 | 9.4118 | 800 | 1.0627 | 36.3073 | 20.703 | 35.2405 | 35.3787 | 2.3678 | 18.8636 |
2.1495 | 10.0 | 850 | 1.0528 | 39.1894 | 24.8355 | 39.3713 | 39.483 | 1.9687 | 18.8636 |
2.1495 | 10.5882 | 900 | 1.0628 | 40.0052 | 23.746 | 38.8726 | 39.077 | 2.0485 | 18.8636 |
2.1495 | 11.1765 | 950 | 1.0371 | 34.4982 | 23.4663 | 34.1685 | 34.1247 | 2.0922 | 18.8636 |
1.046 | 11.7647 | 1000 | 1.0368 | 38.0619 | 19.7898 | 36.4367 | 36.8115 | 2.3387 | 18.8636 |
1.046 | 12.3529 | 1050 | 1.0427 | 38.9055 | 25.1615 | 38.8253 | 38.9385 | 2.5522 | 18.8182 |
1.046 | 12.9412 | 1100 | 1.0255 | 36.5256 | 21.2328 | 34.8816 | 35.2236 | 2.4057 | 18.8182 |
1.046 | 13.5294 | 1150 | 1.0237 | 36.0048 | 25.3977 | 35.9471 | 35.9807 | 2.4804 | 18.8182 |
1.046 | 14.1176 | 1200 | 0.9918 | 32.6697 | 21.3968 | 30.8639 | 31.0221 | 2.4669 | 18.7727 |
1.046 | 14.7059 | 1250 | 1.0598 | 37.7878 | 20.6971 | 36.6794 | 36.7289 | 2.5767 | 18.7727 |
1.046 | 15.2941 | 1300 | 1.0130 | 34.549 | 24.4177 | 34.0376 | 34.1226 | 2.1773 | 18.8182 |
1.046 | 15.8824 | 1350 | 1.0256 | 32.774 | 19.6047 | 31.6125 | 31.9067 | 2.0504 | 18.7727 |
1.046 | 16.4706 | 1400 | 1.0232 | 31.4885 | 18.4703 | 30.0937 | 30.5529 | 2.514 | 18.8182 |
1.046 | 17.0588 | 1450 | 1.0210 | 33.4684 | 20.7982 | 31.7789 | 32.0023 | 2.4881 | 18.7273 |
0.7674 | 17.6471 | 1500 | 1.0419 | 37.4914 | 20.9444 | 35.0519 | 35.2368 | 3.0058 | 18.7727 |
0.7674 | 18.2353 | 1550 | 1.0328 | 36.5606 | 21.0215 | 35.2548 | 35.4748 | 2.7878 | 18.7273 |
0.7674 | 18.8235 | 1600 | 1.0376 | 31.3516 | 18.5826 | 29.6759 | 29.8435 | 2.3192 | 18.8182 |
0.7674 | 19.4118 | 1650 | 1.0414 | 37.4725 | 22.3216 | 35.6306 | 35.7383 | 2.477 | 18.8182 |
0.7674 | 20.0 | 1700 | 1.0513 | 39.5759 | 23.2665 | 39.2332 | 39.3667 | 2.4322 | 18.7273 |
0.7674 | 20.5882 | 1750 | 1.0518 | 36.1526 | 23.8263 | 34.5677 | 34.6173 | 2.8518 | 18.7727 |
0.7674 | 21.1765 | 1800 | 1.0446 | 41.5192 | 23.3064 | 39.3799 | 39.6548 | 3.0326 | 18.8182 |
0.7674 | 21.7647 | 1850 | 1.0150 | 40.5093 | 21.8683 | 38.2773 | 38.6063 | 2.6653 | 18.8636 |
0.7674 | 22.3529 | 1900 | 1.0364 | 34.2216 | 20.2095 | 32.5945 | 32.6999 | 2.6078 | 18.8182 |
0.7674 | 22.9412 | 1950 | 1.0148 | 39.8173 | 20.6247 | 37.2954 | 37.6752 | 3.0336 | 18.8636 |
0.6485 | 23.5294 | 2000 | 1.0429 | 40.2889 | 21.1598 | 37.7657 | 38.0596 | 2.9108 | 18.8182 |
0.6485 | 24.1176 | 2050 | 1.0423 | 39.2679 | 20.8842 | 36.7395 | 36.9295 | 2.845 | 18.8636 |
0.6485 | 24.7059 | 2100 | 1.0358 | 39.086 | 20.7799 | 36.2138 | 36.3741 | 2.9429 | 18.8182 |
0.6485 | 25.2941 | 2150 | 1.0219 | 38.754 | 22.4097 | 36.9752 | 37.121 | 2.831 | 18.8182 |
0.6485 | 25.8824 | 2200 | 1.0450 | 38.3531 | 22.3593 | 36.4439 | 36.6304 | 2.9804 | 18.7727 |
0.6485 | 26.4706 | 2250 | 1.0482 | 40.6921 | 23.617 | 39.298 | 39.5895 | 3.0971 | 18.7727 |
0.6485 | 27.0588 | 2300 | 1.0495 | 39.6761 | 22.7969 | 37.0805 | 37.4949 | 3.2639 | 18.7727 |
0.6485 | 27.6471 | 2350 | 1.0412 | 40.8199 | 23.7109 | 38.9222 | 39.2493 | 3.0267 | 18.7273 |
0.6485 | 28.2353 | 2400 | 1.0453 | 39.9504 | 23.888 | 38.0725 | 38.3121 | 3.2191 | 18.7727 |
0.6485 | 28.8235 | 2450 | 1.0400 | 36.205 | 23.1356 | 34.6087 | 34.6263 | 3.028 | 18.7727 |
0.5501 | 29.4118 | 2500 | 1.0402 | 35.033 | 22.2393 | 33.3754 | 33.4477 | 3.0299 | 18.7273 |
0.5501 | 30.0 | 2550 | 1.0396 | 35.5496 | 22.9927 | 33.7986 | 33.9427 | 3.0002 | 18.7273 |
Framework versions
- Transformers 4.40.0
- Pytorch 2.2.2
- Datasets 2.12.0
- Tokenizers 0.19.1