Edit model card

legal-bert-lora-no-grad

This model is a fine-tuned version of law-ai/InLegalBERT on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5075
  • Accuracy: 0.8280
  • Precision: 0.8290
  • Recall: 0.8280
  • Precision Macro: 0.7852
  • Recall Macro: 0.7756
  • Macro Fpr: 0.0151
  • Weighted Fpr: 0.0145
  • Weighted Specificity: 0.9775
  • Macro Specificity: 0.9871
  • Weighted Sensitivity: 0.8288
  • Macro Sensitivity: 0.7756
  • F1 Micro: 0.8288
  • F1 Macro: 0.7761
  • F1 Weighted: 0.8279

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall Precision Macro Recall Macro Macro Fpr Weighted Fpr Weighted Specificity Macro Specificity Weighted Sensitivity Macro Sensitivity F1 Micro F1 Macro F1 Weighted
1.6412 1.0 643 0.7925 0.7514 0.7190 0.7514 0.4123 0.4707 0.0237 0.0231 0.9699 0.9814 0.7514 0.4707 0.7514 0.4277 0.7283
0.7481 2.0 1286 0.6772 0.7901 0.7726 0.7901 0.5958 0.6252 0.0192 0.0186 0.9741 0.9843 0.7901 0.6252 0.7901 0.5998 0.7769
0.6465 3.0 1929 0.6500 0.8048 0.7931 0.8048 0.6216 0.6414 0.0176 0.0170 0.9764 0.9854 0.8048 0.6414 0.8048 0.6110 0.7904
0.4707 4.0 2572 0.6704 0.8095 0.8008 0.8095 0.6322 0.6689 0.0173 0.0165 0.9745 0.9856 0.8095 0.6689 0.8095 0.6425 0.8018
0.4021 5.0 3215 0.7320 0.8280 0.8269 0.8280 0.7782 0.7573 0.0154 0.0146 0.9765 0.9870 0.8280 0.7573 0.8280 0.7571 0.8219
0.3627 6.0 3858 0.6892 0.8242 0.8227 0.8242 0.7431 0.7365 0.0156 0.0150 0.9768 0.9867 0.8242 0.7365 0.8242 0.7374 0.8223
0.2866 7.0 4501 0.8756 0.8180 0.8171 0.8180 0.7748 0.7410 0.0166 0.0156 0.9718 0.9860 0.8180 0.7410 0.8180 0.7444 0.8122
0.2639 8.0 5144 0.8580 0.8265 0.8259 0.8265 0.7989 0.7428 0.0155 0.0148 0.9756 0.9868 0.8265 0.7428 0.8265 0.7480 0.8217
0.2295 9.0 5787 0.9366 0.8257 0.8231 0.8257 0.7725 0.7465 0.0155 0.0149 0.9762 0.9868 0.8257 0.7465 0.8257 0.7524 0.8223
0.195 10.0 6430 0.9685 0.8273 0.8236 0.8273 0.7595 0.7515 0.0153 0.0147 0.9767 0.9869 0.8273 0.7515 0.8273 0.7528 0.8241
0.1617 11.0 7073 1.0406 0.8311 0.8263 0.8311 0.7615 0.7552 0.0149 0.0143 0.9776 0.9872 0.8311 0.7552 0.8311 0.7543 0.8265
0.1421 12.0 7716 1.0713 0.8319 0.8276 0.8319 0.7626 0.7533 0.0148 0.0142 0.9773 0.9873 0.8319 0.7533 0.8319 0.7546 0.8287
0.1184 13.0 8359 1.1125 0.8257 0.8209 0.8257 0.7569 0.7504 0.0155 0.0149 0.9765 0.9868 0.8257 0.7504 0.8257 0.7510 0.8219
0.1017 14.0 9002 1.1926 0.8211 0.8215 0.8211 0.7675 0.7815 0.0159 0.0153 0.9776 0.9866 0.8211 0.7815 0.8211 0.7727 0.8196
0.0752 15.0 9645 1.2508 0.8164 0.8121 0.8164 0.7479 0.7377 0.0164 0.0158 0.9753 0.9861 0.8164 0.7377 0.8164 0.7402 0.8133
0.0787 16.0 10288 1.3247 0.8218 0.8199 0.8218 0.8034 0.7585 0.0160 0.0152 0.9752 0.9865 0.8218 0.7585 0.8218 0.7698 0.8188
0.0668 17.0 10931 1.3497 0.8211 0.8201 0.8211 0.7500 0.7487 0.0158 0.0153 0.9778 0.9866 0.8211 0.7487 0.8211 0.7468 0.8198
0.0471 18.0 11574 1.4278 0.8164 0.8174 0.8164 0.7672 0.7670 0.0165 0.0158 0.9759 0.9862 0.8164 0.7670 0.8164 0.7644 0.8159
0.0492 19.0 12217 1.4784 0.8180 0.8178 0.8180 0.7631 0.7431 0.0162 0.0156 0.9763 0.9863 0.8180 0.7431 0.8180 0.7453 0.8156
0.0368 20.0 12860 1.4747 0.8195 0.8183 0.8195 0.7729 0.7568 0.0161 0.0155 0.9760 0.9864 0.8195 0.7568 0.8195 0.7622 0.8180
0.0329 21.0 13503 1.5075 0.8280 0.8290 0.8280 0.7825 0.7845 0.0152 0.0146 0.9782 0.9871 0.8280 0.7845 0.8280 0.7798 0.8268
0.0266 22.0 14146 1.4783 0.8273 0.8262 0.8273 0.7780 0.7612 0.0153 0.0147 0.9779 0.9870 0.8273 0.7612 0.8273 0.7651 0.8247
0.0302 23.0 14789 1.5281 0.8234 0.8246 0.8234 0.7745 0.7699 0.0158 0.0151 0.9760 0.9866 0.8234 0.7699 0.8234 0.7679 0.8224
0.0207 24.0 15432 1.5475 0.8265 0.8262 0.8265 0.7809 0.7727 0.0155 0.0148 0.9768 0.9869 0.8265 0.7727 0.8265 0.7721 0.8248
0.0168 25.0 16075 1.5237 0.8242 0.8237 0.8242 0.7726 0.7619 0.0155 0.0150 0.9775 0.9868 0.8242 0.7619 0.8242 0.7629 0.8231
0.0167 26.0 16718 1.5815 0.8234 0.8255 0.8234 0.7766 0.7728 0.0156 0.0151 0.9775 0.9867 0.8234 0.7728 0.8234 0.7707 0.8232
0.0127 27.0 17361 1.6010 0.8218 0.8228 0.8218 0.7790 0.7716 0.0158 0.0152 0.9769 0.9866 0.8218 0.7716 0.8218 0.7709 0.8211
0.0094 28.0 18004 1.5774 0.8265 0.8269 0.8265 0.7788 0.7739 0.0153 0.0148 0.9778 0.9870 0.8265 0.7739 0.8265 0.7728 0.8258
0.0063 29.0 18647 1.5894 0.8304 0.8306 0.8304 0.7825 0.7764 0.0150 0.0144 0.9779 0.9872 0.8304 0.7764 0.8304 0.7759 0.8296
0.0126 30.0 19290 1.5927 0.8288 0.8291 0.8288 0.7852 0.7756 0.0151 0.0145 0.9775 0.9871 0.8288 0.7756 0.8288 0.7761 0.8279

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.1
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Model tree for xshubhamx/InLegalBERT-lora-no-grad

Base model

law-ai/InLegalBERT
Finetuned
(9)
this model