legal-bert-base-uncased
This model is a fine-tuned version of nlpaueb/legal-bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.1536
- Accuracy: 0.8203
- Precision: 0.8212
- Recall: 0.8203
- Precision Macro: 0.7660
- Recall Macro: 0.7548
- Macro Fpr: 0.0156
- Weighted Fpr: 0.0150
- Weighted Specificity: 0.9766
- Macro Specificity: 0.9867
- Weighted Sensitivity: 0.8242
- Macro Sensitivity: 0.7548
- F1 Micro: 0.8242
- F1 Macro: 0.7566
- F1 Weighted: 0.8221
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | Precision Macro | Recall Macro | Macro Fpr | Weighted Fpr | Weighted Specificity | Macro Specificity | Weighted Sensitivity | Macro Sensitivity | F1 Micro | F1 Macro | F1 Weighted |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1096 | 1.0 | 643 | 0.6748 | 0.7978 | 0.7855 | 0.7978 | 0.6239 | 0.6340 | 0.0188 | 0.0178 | 0.9702 | 0.9845 | 0.7978 | 0.6340 | 0.7978 | 0.6134 | 0.7840 |
0.6187 | 2.0 | 1286 | 0.6449 | 0.8110 | 0.8196 | 0.8110 | 0.7806 | 0.7327 | 0.0169 | 0.0164 | 0.9755 | 0.9858 | 0.8110 | 0.7327 | 0.8110 | 0.7268 | 0.8090 |
0.4747 | 3.0 | 1929 | 0.8151 | 0.8149 | 0.8192 | 0.8149 | 0.7659 | 0.7390 | 0.0166 | 0.0160 | 0.9761 | 0.9861 | 0.8149 | 0.7390 | 0.8149 | 0.7370 | 0.8125 |
0.2645 | 4.0 | 2572 | 0.9345 | 0.8218 | 0.8198 | 0.8218 | 0.7446 | 0.7413 | 0.0158 | 0.0152 | 0.9774 | 0.9866 | 0.8218 | 0.7413 | 0.8218 | 0.7385 | 0.8189 |
0.1901 | 5.0 | 3215 | 1.0929 | 0.8195 | 0.8242 | 0.8195 | 0.8264 | 0.7432 | 0.0161 | 0.0155 | 0.9750 | 0.9863 | 0.8195 | 0.7432 | 0.8195 | 0.7595 | 0.8166 |
0.1131 | 6.0 | 3858 | 1.1536 | 0.8203 | 0.8212 | 0.8203 | 0.7968 | 0.7786 | 0.0159 | 0.0154 | 0.9766 | 0.9865 | 0.8203 | 0.7786 | 0.8203 | 0.7840 | 0.8197 |
0.063 | 7.0 | 4501 | 1.3218 | 0.8118 | 0.8184 | 0.8118 | 0.7518 | 0.7526 | 0.0166 | 0.0163 | 0.9773 | 0.9859 | 0.8118 | 0.7526 | 0.8118 | 0.7495 | 0.8136 |
0.0264 | 8.0 | 5144 | 1.3863 | 0.8257 | 0.8262 | 0.8257 | 0.7784 | 0.7768 | 0.0155 | 0.0149 | 0.9768 | 0.9868 | 0.8257 | 0.7768 | 0.8257 | 0.7730 | 0.8247 |
0.03 | 9.0 | 5787 | 1.5542 | 0.8079 | 0.8167 | 0.8079 | 0.7639 | 0.7653 | 0.0172 | 0.0167 | 0.9744 | 0.9855 | 0.8079 | 0.7653 | 0.8079 | 0.7595 | 0.8096 |
0.0149 | 10.0 | 6430 | 1.5835 | 0.8141 | 0.8155 | 0.8141 | 0.7545 | 0.7361 | 0.0168 | 0.0160 | 0.9730 | 0.9858 | 0.8141 | 0.7361 | 0.8141 | 0.7412 | 0.8127 |
0.005 | 11.0 | 7073 | 1.5325 | 0.8242 | 0.8250 | 0.8242 | 0.7805 | 0.7812 | 0.0156 | 0.0150 | 0.9758 | 0.9867 | 0.8242 | 0.7812 | 0.8242 | 0.7681 | 0.8226 |
0.003 | 12.0 | 7716 | 1.5714 | 0.8288 | 0.8299 | 0.8288 | 0.7701 | 0.7679 | 0.0152 | 0.0145 | 0.9765 | 0.9870 | 0.8288 | 0.7679 | 0.8288 | 0.7626 | 0.8276 |
0.0033 | 13.0 | 8359 | 1.5511 | 0.8249 | 0.8219 | 0.8249 | 0.7676 | 0.7598 | 0.0156 | 0.0149 | 0.9760 | 0.9867 | 0.8249 | 0.7598 | 0.8249 | 0.7608 | 0.8225 |
0.0018 | 14.0 | 9002 | 1.5510 | 0.8249 | 0.8225 | 0.8249 | 0.7686 | 0.7554 | 0.0155 | 0.0149 | 0.9767 | 0.9868 | 0.8249 | 0.7554 | 0.8249 | 0.7572 | 0.8224 |
0.0008 | 15.0 | 9645 | 1.5469 | 0.8242 | 0.8220 | 0.8242 | 0.7660 | 0.7548 | 0.0156 | 0.0150 | 0.9766 | 0.9867 | 0.8242 | 0.7548 | 0.8242 | 0.7566 | 0.8221 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.1.2
- Datasets 2.1.0
- Tokenizers 0.15.2
- Downloads last month
- 7
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for xshubhamx/legal-bert-base-uncased
Base model
nlpaueb/legal-bert-base-uncased