Edit model card

legal-bert-base-uncased

This model is a fine-tuned version of nlpaueb/legal-bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1536
  • Accuracy: 0.8203
  • Precision: 0.8212
  • Recall: 0.8203
  • Precision Macro: 0.7660
  • Recall Macro: 0.7548
  • Macro Fpr: 0.0156
  • Weighted Fpr: 0.0150
  • Weighted Specificity: 0.9766
  • Macro Specificity: 0.9867
  • Weighted Sensitivity: 0.8242
  • Macro Sensitivity: 0.7548
  • F1 Micro: 0.8242
  • F1 Macro: 0.7566
  • F1 Weighted: 0.8221

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall Precision Macro Recall Macro Macro Fpr Weighted Fpr Weighted Specificity Macro Specificity Weighted Sensitivity Macro Sensitivity F1 Micro F1 Macro F1 Weighted
1.1096 1.0 643 0.6748 0.7978 0.7855 0.7978 0.6239 0.6340 0.0188 0.0178 0.9702 0.9845 0.7978 0.6340 0.7978 0.6134 0.7840
0.6187 2.0 1286 0.6449 0.8110 0.8196 0.8110 0.7806 0.7327 0.0169 0.0164 0.9755 0.9858 0.8110 0.7327 0.8110 0.7268 0.8090
0.4747 3.0 1929 0.8151 0.8149 0.8192 0.8149 0.7659 0.7390 0.0166 0.0160 0.9761 0.9861 0.8149 0.7390 0.8149 0.7370 0.8125
0.2645 4.0 2572 0.9345 0.8218 0.8198 0.8218 0.7446 0.7413 0.0158 0.0152 0.9774 0.9866 0.8218 0.7413 0.8218 0.7385 0.8189
0.1901 5.0 3215 1.0929 0.8195 0.8242 0.8195 0.8264 0.7432 0.0161 0.0155 0.9750 0.9863 0.8195 0.7432 0.8195 0.7595 0.8166
0.1131 6.0 3858 1.1536 0.8203 0.8212 0.8203 0.7968 0.7786 0.0159 0.0154 0.9766 0.9865 0.8203 0.7786 0.8203 0.7840 0.8197
0.063 7.0 4501 1.3218 0.8118 0.8184 0.8118 0.7518 0.7526 0.0166 0.0163 0.9773 0.9859 0.8118 0.7526 0.8118 0.7495 0.8136
0.0264 8.0 5144 1.3863 0.8257 0.8262 0.8257 0.7784 0.7768 0.0155 0.0149 0.9768 0.9868 0.8257 0.7768 0.8257 0.7730 0.8247
0.03 9.0 5787 1.5542 0.8079 0.8167 0.8079 0.7639 0.7653 0.0172 0.0167 0.9744 0.9855 0.8079 0.7653 0.8079 0.7595 0.8096
0.0149 10.0 6430 1.5835 0.8141 0.8155 0.8141 0.7545 0.7361 0.0168 0.0160 0.9730 0.9858 0.8141 0.7361 0.8141 0.7412 0.8127
0.005 11.0 7073 1.5325 0.8242 0.8250 0.8242 0.7805 0.7812 0.0156 0.0150 0.9758 0.9867 0.8242 0.7812 0.8242 0.7681 0.8226
0.003 12.0 7716 1.5714 0.8288 0.8299 0.8288 0.7701 0.7679 0.0152 0.0145 0.9765 0.9870 0.8288 0.7679 0.8288 0.7626 0.8276
0.0033 13.0 8359 1.5511 0.8249 0.8219 0.8249 0.7676 0.7598 0.0156 0.0149 0.9760 0.9867 0.8249 0.7598 0.8249 0.7608 0.8225
0.0018 14.0 9002 1.5510 0.8249 0.8225 0.8249 0.7686 0.7554 0.0155 0.0149 0.9767 0.9868 0.8249 0.7554 0.8249 0.7572 0.8224
0.0008 15.0 9645 1.5469 0.8242 0.8220 0.8242 0.7660 0.7548 0.0156 0.0150 0.9766 0.9867 0.8242 0.7548 0.8242 0.7566 0.8221

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.1.2
  • Datasets 2.1.0
  • Tokenizers 0.15.2
Downloads last month
7
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for xshubhamx/legal-bert-base-uncased

Finetuned
(39)
this model