legal-bert-lora-no-grad

This model is a fine-tuned version of nlpaueb/legal-bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4787
  • Accuracy: 0.8273
  • Precision: 0.8270
  • Recall: 0.8273
  • Precision Macro: 0.7941
  • Recall Macro: 0.7774
  • Macro Fpr: 0.0157
  • Weighted Fpr: 0.0151
  • Weighted Specificity: 0.9767
  • Macro Specificity: 0.9867
  • Weighted Sensitivity: 0.8234
  • Macro Sensitivity: 0.7774
  • F1 Micro: 0.8234
  • F1 Macro: 0.7824
  • F1 Weighted: 0.8225

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall Precision Macro Recall Macro Macro Fpr Weighted Fpr Weighted Specificity Macro Specificity Weighted Sensitivity Macro Sensitivity F1 Micro F1 Macro F1 Weighted
1.5473 1.0 643 0.8485 0.7173 0.6897 0.7173 0.3892 0.4422 0.0278 0.0274 0.9658 0.9789 0.7173 0.4422 0.7173 0.3920 0.6869
0.7816 2.0 1286 0.7113 0.7545 0.7492 0.7545 0.5282 0.5054 0.0231 0.0227 0.9711 0.9817 0.7545 0.5054 0.7545 0.4751 0.7304
0.6956 3.0 1929 0.6460 0.7986 0.7793 0.7986 0.5436 0.5701 0.0184 0.0177 0.9741 0.9848 0.7986 0.5701 0.7986 0.5439 0.7833
0.4942 4.0 2572 0.6430 0.8110 0.8014 0.8110 0.6315 0.6670 0.0169 0.0164 0.9763 0.9858 0.8110 0.6670 0.8110 0.6413 0.8037
0.4088 5.0 3215 0.7148 0.8319 0.8301 0.8319 0.7951 0.7444 0.0150 0.0142 0.9758 0.9872 0.8319 0.7444 0.8319 0.7459 0.8254
0.3722 6.0 3858 0.7203 0.8319 0.8282 0.8319 0.7594 0.7604 0.0149 0.0142 0.9779 0.9873 0.8319 0.7604 0.8319 0.7582 0.8285
0.3088 7.0 4501 0.7796 0.8218 0.8283 0.8218 0.7927 0.7436 0.0158 0.0152 0.9765 0.9866 0.8218 0.7436 0.8218 0.7486 0.8203
0.245 8.0 5144 0.8732 0.8187 0.8171 0.8187 0.7696 0.7403 0.0163 0.0156 0.9752 0.9863 0.8187 0.7403 0.8187 0.7409 0.8135
0.2331 9.0 5787 0.8710 0.8265 0.8280 0.8265 0.7595 0.7521 0.0152 0.0148 0.9776 0.9869 0.8265 0.7521 0.8265 0.7530 0.8261
0.1878 10.0 6430 0.9866 0.8257 0.8261 0.8257 0.7672 0.7604 0.0153 0.0149 0.9788 0.9870 0.8257 0.7604 0.8257 0.7588 0.8240
0.1627 11.0 7073 1.0530 0.8257 0.8269 0.8257 0.7706 0.7711 0.0154 0.0149 0.9787 0.9870 0.8257 0.7711 0.8257 0.7675 0.8234
0.1301 12.0 7716 1.1042 0.8265 0.8246 0.8265 0.7633 0.7587 0.0155 0.0148 0.9763 0.9869 0.8265 0.7587 0.8265 0.7576 0.8228
0.1291 13.0 8359 1.1461 0.8234 0.8215 0.8234 0.7582 0.7613 0.0157 0.0151 0.9768 0.9867 0.8234 0.7613 0.8234 0.7581 0.8211
0.11 14.0 9002 1.1837 0.8226 0.8182 0.8226 0.7716 0.7576 0.0159 0.0152 0.9756 0.9865 0.8226 0.7576 0.8226 0.7627 0.8195
0.0863 15.0 9645 1.2020 0.8218 0.8185 0.8218 0.7616 0.7458 0.0160 0.0152 0.9754 0.9865 0.8218 0.7458 0.8218 0.7498 0.8183
0.0735 16.0 10288 1.2491 0.8187 0.8160 0.8187 0.7620 0.7464 0.0162 0.0156 0.9755 0.9863 0.8187 0.7464 0.8187 0.7517 0.8168
0.0802 17.0 10931 1.3288 0.8164 0.8165 0.8164 0.7471 0.7531 0.0164 0.0158 0.9765 0.9862 0.8164 0.7531 0.8164 0.7483 0.8152
0.0525 18.0 11574 1.3620 0.8133 0.8127 0.8133 0.7557 0.7478 0.0168 0.0161 0.9754 0.9859 0.8133 0.7478 0.8133 0.7486 0.8106
0.0474 19.0 12217 1.3783 0.8187 0.8220 0.8187 0.8154 0.7972 0.0162 0.0156 0.9755 0.9863 0.8187 0.7972 0.8187 0.8024 0.8187
0.0315 20.0 12860 1.4004 0.8226 0.8266 0.8226 0.8011 0.7910 0.0157 0.0152 0.9778 0.9867 0.8226 0.7910 0.8226 0.7907 0.8231
0.0325 21.0 13503 1.4683 0.8187 0.8198 0.8187 0.8030 0.7876 0.0161 0.0156 0.9765 0.9863 0.8187 0.7876 0.8187 0.7921 0.8182
0.0192 22.0 14146 1.4677 0.8249 0.8224 0.8249 0.7598 0.7482 0.0155 0.0149 0.9768 0.9868 0.8249 0.7482 0.8249 0.7505 0.8225
0.0235 23.0 14789 1.4610 0.8211 0.8221 0.8211 0.8090 0.7941 0.0160 0.0153 0.9765 0.9865 0.8211 0.7941 0.8211 0.7982 0.8200
0.0142 24.0 15432 1.4787 0.8273 0.8270 0.8273 0.8179 0.7977 0.0153 0.0147 0.9774 0.9870 0.8273 0.7977 0.8273 0.8054 0.8260
0.0172 25.0 16075 1.5374 0.8211 0.8231 0.8211 0.7830 0.7711 0.0159 0.0153 0.9767 0.9865 0.8211 0.7711 0.8211 0.7737 0.8212
0.0097 26.0 16718 1.5153 0.8242 0.8262 0.8242 0.8105 0.7894 0.0156 0.0150 0.9772 0.9868 0.8242 0.7894 0.8242 0.7954 0.8240
0.0109 27.0 17361 1.5565 0.8218 0.8237 0.8218 0.7876 0.7848 0.0158 0.0152 0.9770 0.9866 0.8218 0.7848 0.8218 0.7832 0.8214
0.0076 28.0 18004 1.5574 0.8226 0.8247 0.8226 0.7882 0.7843 0.0157 0.0152 0.9771 0.9867 0.8226 0.7843 0.8226 0.7836 0.8229
0.006 29.0 18647 1.5721 0.8234 0.8235 0.8234 0.7868 0.7771 0.0157 0.0151 0.9769 0.9867 0.8234 0.7771 0.8234 0.7788 0.8224
0.0035 30.0 19290 1.5803 0.8234 0.8234 0.8234 0.7941 0.7774 0.0157 0.0151 0.9767 0.9867 0.8234 0.7774 0.8234 0.7824 0.8225

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.1
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Model tree for xshubhamx/legal-bert-lora-no-grad

Finetuned
(47)
this model