xshubhamx commited on
Commit
6a79994
1 Parent(s): 2bc555a

Upload folder using huggingface_hub

Browse files
training_checkpoints/checkpoint-14146/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: nlpaueb/legal-bert-base-uncased
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.10.0
training_checkpoints/checkpoint-14146/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "nlpaueb/legal-bert-base-uncased",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 64,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "dense",
24
+ "key",
25
+ "query",
26
+ "value"
27
+ ],
28
+ "task_type": "SEQ_CLS",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
training_checkpoints/checkpoint-14146/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:efaf6e984b9341343359a4790a19fd72c963bda57e1b090d285dfb6c0e06ea5b
3
+ size 104549068
training_checkpoints/checkpoint-14146/added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "<pad>": 30522
3
+ }
training_checkpoints/checkpoint-14146/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37e04e9e312828e35cd7c89a9bd0d90b482ded8ad8fb8815091c81562705cb54
3
+ size 21646778
training_checkpoints/checkpoint-14146/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3717bbc3f54268631e3c42156d48cd3639bbb5b58b1965aa302ec47a07e2ff26
3
+ size 14244
training_checkpoints/checkpoint-14146/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:480eb284882ef4590667581598dab65acd4deda678fcafa08b4ec1630777c7e2
3
+ size 1064
training_checkpoints/checkpoint-14146/special_tokens_map.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": {
5
+ "content": "<pad>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false
10
+ },
11
+ "sep_token": "[SEP]",
12
+ "unk_token": "[UNK]"
13
+ }
training_checkpoints/checkpoint-14146/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
training_checkpoints/checkpoint-14146/tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30522": {
44
+ "content": "<pad>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "clean_up_tokenization_spaces": true,
53
+ "cls_token": "[CLS]",
54
+ "do_basic_tokenize": true,
55
+ "do_lower_case": true,
56
+ "mask_token": "[MASK]",
57
+ "model_max_length": 512,
58
+ "never_split": null,
59
+ "pad_token": "<pad>",
60
+ "sep_token": "[SEP]",
61
+ "strip_accents": null,
62
+ "tokenize_chinese_chars": true,
63
+ "tokenizer_class": "BertTokenizer",
64
+ "unk_token": "[UNK]"
65
+ }
training_checkpoints/checkpoint-14146/trainer_state.json ADDED
@@ -0,0 +1,671 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.80243850868883,
3
+ "best_model_checkpoint": "legal-bert-lora-no-grad/checkpoint-12217",
4
+ "epoch": 22.0,
5
+ "eval_steps": 500,
6
+ "global_step": 14146,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.78,
13
+ "learning_rate": 4.870399170554692e-05,
14
+ "loss": 1.5473,
15
+ "step": 500
16
+ },
17
+ {
18
+ "epoch": 1.0,
19
+ "eval_accuracy": 0.7172734314484895,
20
+ "eval_f1_macro": 0.3920432121625908,
21
+ "eval_f1_micro": 0.7172734314484894,
22
+ "eval_f1_weighted": 0.6868869808248764,
23
+ "eval_loss": 0.8484711050987244,
24
+ "eval_macro_fpr": 0.027836504093424867,
25
+ "eval_macro_sensitivity": 0.44215864388540455,
26
+ "eval_macro_specificity": 0.9788744549045134,
27
+ "eval_precision": 0.6896842532804647,
28
+ "eval_precision_macro": 0.3892290687521846,
29
+ "eval_recall": 0.7172734314484895,
30
+ "eval_recall_macro": 0.44215864388540455,
31
+ "eval_runtime": 32.4222,
32
+ "eval_samples_per_second": 39.818,
33
+ "eval_steps_per_second": 4.997,
34
+ "eval_weighted_fpr": 0.027383899767424412,
35
+ "eval_weighted_sensitivity": 0.7172734314484895,
36
+ "eval_weighted_specificity": 0.9658433921192108,
37
+ "step": 643
38
+ },
39
+ {
40
+ "epoch": 1.56,
41
+ "learning_rate": 4.740798341109383e-05,
42
+ "loss": 0.7816,
43
+ "step": 1000
44
+ },
45
+ {
46
+ "epoch": 2.0,
47
+ "eval_accuracy": 0.7544539116963594,
48
+ "eval_f1_macro": 0.47513531679703136,
49
+ "eval_f1_micro": 0.7544539116963594,
50
+ "eval_f1_weighted": 0.7304002619527014,
51
+ "eval_loss": 0.7113391757011414,
52
+ "eval_macro_fpr": 0.023051270843305598,
53
+ "eval_macro_sensitivity": 0.5054156753128263,
54
+ "eval_macro_specificity": 0.9817050378554314,
55
+ "eval_precision": 0.7491876907285084,
56
+ "eval_precision_macro": 0.5281699878111706,
57
+ "eval_recall": 0.7544539116963594,
58
+ "eval_recall_macro": 0.5054156753128263,
59
+ "eval_runtime": 33.6622,
60
+ "eval_samples_per_second": 38.352,
61
+ "eval_steps_per_second": 4.813,
62
+ "eval_weighted_fpr": 0.02271912850283093,
63
+ "eval_weighted_sensitivity": 0.7544539116963594,
64
+ "eval_weighted_specificity": 0.9711216561351127,
65
+ "step": 1286
66
+ },
67
+ {
68
+ "epoch": 2.33,
69
+ "learning_rate": 4.6111975116640746e-05,
70
+ "loss": 0.6956,
71
+ "step": 1500
72
+ },
73
+ {
74
+ "epoch": 3.0,
75
+ "eval_accuracy": 0.7986057319907048,
76
+ "eval_f1_macro": 0.5439483491438576,
77
+ "eval_f1_micro": 0.7986057319907048,
78
+ "eval_f1_weighted": 0.7833451448204543,
79
+ "eval_loss": 0.6460158824920654,
80
+ "eval_macro_fpr": 0.01844352926124183,
81
+ "eval_macro_sensitivity": 0.5700868724489073,
82
+ "eval_macro_specificity": 0.9848453217277398,
83
+ "eval_precision": 0.7793241511142787,
84
+ "eval_precision_macro": 0.5435553848320287,
85
+ "eval_recall": 0.7986057319907048,
86
+ "eval_recall_macro": 0.5700868724489073,
87
+ "eval_runtime": 33.205,
88
+ "eval_samples_per_second": 38.88,
89
+ "eval_steps_per_second": 4.879,
90
+ "eval_weighted_fpr": 0.01769429699196951,
91
+ "eval_weighted_sensitivity": 0.7986057319907048,
92
+ "eval_weighted_specificity": 0.974074093925392,
93
+ "step": 1929
94
+ },
95
+ {
96
+ "epoch": 3.11,
97
+ "learning_rate": 4.481596682218767e-05,
98
+ "loss": 0.6117,
99
+ "step": 2000
100
+ },
101
+ {
102
+ "epoch": 3.89,
103
+ "learning_rate": 4.3519958527734576e-05,
104
+ "loss": 0.4942,
105
+ "step": 2500
106
+ },
107
+ {
108
+ "epoch": 4.0,
109
+ "eval_accuracy": 0.8109992254066615,
110
+ "eval_f1_macro": 0.641318903734146,
111
+ "eval_f1_micro": 0.8109992254066615,
112
+ "eval_f1_weighted": 0.8036671817127167,
113
+ "eval_loss": 0.6429558992385864,
114
+ "eval_macro_fpr": 0.016902452669854486,
115
+ "eval_macro_sensitivity": 0.6670193163886222,
116
+ "eval_macro_specificity": 0.9858199536379567,
117
+ "eval_precision": 0.8014184747492699,
118
+ "eval_precision_macro": 0.6315294283267076,
119
+ "eval_recall": 0.8109992254066615,
120
+ "eval_recall_macro": 0.6670193163886222,
121
+ "eval_runtime": 34.2851,
122
+ "eval_samples_per_second": 37.655,
123
+ "eval_steps_per_second": 4.725,
124
+ "eval_weighted_fpr": 0.016373641121997046,
125
+ "eval_weighted_sensitivity": 0.8109992254066615,
126
+ "eval_weighted_specificity": 0.9763000791626885,
127
+ "step": 2572
128
+ },
129
+ {
130
+ "epoch": 4.67,
131
+ "learning_rate": 4.22239502332815e-05,
132
+ "loss": 0.4088,
133
+ "step": 3000
134
+ },
135
+ {
136
+ "epoch": 5.0,
137
+ "eval_accuracy": 0.8319132455460883,
138
+ "eval_f1_macro": 0.7458887908906745,
139
+ "eval_f1_micro": 0.8319132455460883,
140
+ "eval_f1_weighted": 0.8254435175521364,
141
+ "eval_loss": 0.7148057222366333,
142
+ "eval_macro_fpr": 0.015014171873602745,
143
+ "eval_macro_sensitivity": 0.7444010739541649,
144
+ "eval_macro_specificity": 0.9871775908314393,
145
+ "eval_precision": 0.8301095647411415,
146
+ "eval_precision_macro": 0.795128331887366,
147
+ "eval_recall": 0.8319132455460883,
148
+ "eval_recall_macro": 0.7444010739541649,
149
+ "eval_runtime": 32.6496,
150
+ "eval_samples_per_second": 39.541,
151
+ "eval_steps_per_second": 4.962,
152
+ "eval_weighted_fpr": 0.014226709499770536,
153
+ "eval_weighted_sensitivity": 0.8319132455460883,
154
+ "eval_weighted_specificity": 0.9757506169255016,
155
+ "step": 3215
156
+ },
157
+ {
158
+ "epoch": 5.44,
159
+ "learning_rate": 4.092794193882841e-05,
160
+ "loss": 0.3722,
161
+ "step": 3500
162
+ },
163
+ {
164
+ "epoch": 6.0,
165
+ "eval_accuracy": 0.8319132455460883,
166
+ "eval_f1_macro": 0.7581556537237687,
167
+ "eval_f1_micro": 0.8319132455460883,
168
+ "eval_f1_weighted": 0.8284954274383471,
169
+ "eval_loss": 0.7203006744384766,
170
+ "eval_macro_fpr": 0.014862611036154928,
171
+ "eval_macro_sensitivity": 0.7604143289637364,
172
+ "eval_macro_specificity": 0.9873237068761225,
173
+ "eval_precision": 0.8282196199964869,
174
+ "eval_precision_macro": 0.7594204389852343,
175
+ "eval_recall": 0.8319132455460883,
176
+ "eval_recall_macro": 0.7604143289637364,
177
+ "eval_runtime": 32.5293,
178
+ "eval_samples_per_second": 39.687,
179
+ "eval_steps_per_second": 4.98,
180
+ "eval_weighted_fpr": 0.014226709499770536,
181
+ "eval_weighted_sensitivity": 0.8319132455460883,
182
+ "eval_weighted_specificity": 0.9779423575957491,
183
+ "step": 3858
184
+ },
185
+ {
186
+ "epoch": 6.22,
187
+ "learning_rate": 3.963193364437533e-05,
188
+ "loss": 0.3518,
189
+ "step": 4000
190
+ },
191
+ {
192
+ "epoch": 7.0,
193
+ "learning_rate": 3.833592534992224e-05,
194
+ "loss": 0.3088,
195
+ "step": 4500
196
+ },
197
+ {
198
+ "epoch": 7.0,
199
+ "eval_accuracy": 0.8218435321456236,
200
+ "eval_f1_macro": 0.748587043102148,
201
+ "eval_f1_micro": 0.8218435321456236,
202
+ "eval_f1_weighted": 0.8202672850983224,
203
+ "eval_loss": 0.7796419858932495,
204
+ "eval_macro_fpr": 0.015766934174909337,
205
+ "eval_macro_sensitivity": 0.7436163865406156,
206
+ "eval_macro_specificity": 0.986554823310482,
207
+ "eval_precision": 0.8283195435686048,
208
+ "eval_precision_macro": 0.7927343403715958,
209
+ "eval_recall": 0.8218435321456236,
210
+ "eval_recall_macro": 0.7436163865406156,
211
+ "eval_runtime": 33.9886,
212
+ "eval_samples_per_second": 37.983,
213
+ "eval_steps_per_second": 4.766,
214
+ "eval_weighted_fpr": 0.015247944842216919,
215
+ "eval_weighted_sensitivity": 0.8218435321456236,
216
+ "eval_weighted_specificity": 0.9764788175116066,
217
+ "step": 4501
218
+ },
219
+ {
220
+ "epoch": 7.78,
221
+ "learning_rate": 3.7039917055469156e-05,
222
+ "loss": 0.245,
223
+ "step": 5000
224
+ },
225
+ {
226
+ "epoch": 8.0,
227
+ "eval_accuracy": 0.8187451587916343,
228
+ "eval_f1_macro": 0.7408588571905798,
229
+ "eval_f1_micro": 0.8187451587916342,
230
+ "eval_f1_weighted": 0.8134714190372911,
231
+ "eval_loss": 0.8731526136398315,
232
+ "eval_macro_fpr": 0.016323302917471562,
233
+ "eval_macro_sensitivity": 0.7403464639779053,
234
+ "eval_macro_specificity": 0.98626453049897,
235
+ "eval_precision": 0.8170725248278505,
236
+ "eval_precision_macro": 0.7696333486311014,
237
+ "eval_recall": 0.8187451587916343,
238
+ "eval_recall_macro": 0.7403464639779053,
239
+ "eval_runtime": 32.6647,
240
+ "eval_samples_per_second": 39.523,
241
+ "eval_steps_per_second": 4.959,
242
+ "eval_weighted_fpr": 0.015566790846194785,
243
+ "eval_weighted_sensitivity": 0.8187451587916343,
244
+ "eval_weighted_specificity": 0.9752227986929156,
245
+ "step": 5144
246
+ },
247
+ {
248
+ "epoch": 8.55,
249
+ "learning_rate": 3.574390876101607e-05,
250
+ "loss": 0.2331,
251
+ "step": 5500
252
+ },
253
+ {
254
+ "epoch": 9.0,
255
+ "eval_accuracy": 0.8264910921766073,
256
+ "eval_f1_macro": 0.753016641591601,
257
+ "eval_f1_micro": 0.8264910921766073,
258
+ "eval_f1_weighted": 0.8260538424611459,
259
+ "eval_loss": 0.871034562587738,
260
+ "eval_macro_fpr": 0.015223198880351374,
261
+ "eval_macro_sensitivity": 0.7521384355359189,
262
+ "eval_macro_specificity": 0.9869379376488985,
263
+ "eval_precision": 0.8280339150697505,
264
+ "eval_precision_macro": 0.7595158765535532,
265
+ "eval_recall": 0.8264910921766073,
266
+ "eval_recall_macro": 0.7521384355359189,
267
+ "eval_runtime": 32.6231,
268
+ "eval_samples_per_second": 39.573,
269
+ "eval_steps_per_second": 4.966,
270
+ "eval_weighted_fpr": 0.014773776546629732,
271
+ "eval_weighted_sensitivity": 0.8264910921766073,
272
+ "eval_weighted_specificity": 0.9775779725568708,
273
+ "step": 5787
274
+ },
275
+ {
276
+ "epoch": 9.33,
277
+ "learning_rate": 3.4447900466562985e-05,
278
+ "loss": 0.1878,
279
+ "step": 6000
280
+ },
281
+ {
282
+ "epoch": 10.0,
283
+ "eval_accuracy": 0.82571649883811,
284
+ "eval_f1_macro": 0.7588436992559459,
285
+ "eval_f1_micro": 0.82571649883811,
286
+ "eval_f1_weighted": 0.8239752092365729,
287
+ "eval_loss": 0.9866135120391846,
288
+ "eval_macro_fpr": 0.015306627243977184,
289
+ "eval_macro_sensitivity": 0.7603889662202937,
290
+ "eval_macro_specificity": 0.9869690054538824,
291
+ "eval_precision": 0.8260731585047043,
292
+ "eval_precision_macro": 0.7672111037553849,
293
+ "eval_recall": 0.82571649883811,
294
+ "eval_recall_macro": 0.7603889662202937,
295
+ "eval_runtime": 33.5564,
296
+ "eval_samples_per_second": 38.473,
297
+ "eval_steps_per_second": 4.828,
298
+ "eval_weighted_fpr": 0.01485246550927454,
299
+ "eval_weighted_sensitivity": 0.82571649883811,
300
+ "eval_weighted_specificity": 0.9788185829701274,
301
+ "step": 6430
302
+ },
303
+ {
304
+ "epoch": 10.11,
305
+ "learning_rate": 3.315189217210991e-05,
306
+ "loss": 0.1934,
307
+ "step": 6500
308
+ },
309
+ {
310
+ "epoch": 10.89,
311
+ "learning_rate": 3.1855883877656815e-05,
312
+ "loss": 0.1627,
313
+ "step": 7000
314
+ },
315
+ {
316
+ "epoch": 11.0,
317
+ "eval_accuracy": 0.82571649883811,
318
+ "eval_f1_macro": 0.767473750579757,
319
+ "eval_f1_micro": 0.82571649883811,
320
+ "eval_f1_weighted": 0.8233713451484083,
321
+ "eval_loss": 1.0529617071151733,
322
+ "eval_macro_fpr": 0.015351918387195561,
323
+ "eval_macro_sensitivity": 0.7711152769110098,
324
+ "eval_macro_specificity": 0.9869581108070966,
325
+ "eval_precision": 0.8268711216555169,
326
+ "eval_precision_macro": 0.7706107626580333,
327
+ "eval_recall": 0.82571649883811,
328
+ "eval_recall_macro": 0.7711152769110098,
329
+ "eval_runtime": 32.7851,
330
+ "eval_samples_per_second": 39.378,
331
+ "eval_steps_per_second": 4.941,
332
+ "eval_weighted_fpr": 0.01485246550927454,
333
+ "eval_weighted_sensitivity": 0.82571649883811,
334
+ "eval_weighted_specificity": 0.9786551632683399,
335
+ "step": 7073
336
+ },
337
+ {
338
+ "epoch": 11.66,
339
+ "learning_rate": 3.0559875583203736e-05,
340
+ "loss": 0.1301,
341
+ "step": 7500
342
+ },
343
+ {
344
+ "epoch": 12.0,
345
+ "eval_accuracy": 0.8264910921766073,
346
+ "eval_f1_macro": 0.7575609282906195,
347
+ "eval_f1_micro": 0.8264910921766073,
348
+ "eval_f1_weighted": 0.8227831044737154,
349
+ "eval_loss": 1.1041574478149414,
350
+ "eval_macro_fpr": 0.015507747324292978,
351
+ "eval_macro_sensitivity": 0.7586841377838723,
352
+ "eval_macro_specificity": 0.986855053135477,
353
+ "eval_precision": 0.8246142974152224,
354
+ "eval_precision_macro": 0.7633072608154402,
355
+ "eval_recall": 0.8264910921766073,
356
+ "eval_recall_macro": 0.7586841377838723,
357
+ "eval_runtime": 33.2755,
358
+ "eval_samples_per_second": 38.797,
359
+ "eval_steps_per_second": 4.868,
360
+ "eval_weighted_fpr": 0.014773776546629732,
361
+ "eval_weighted_sensitivity": 0.8264910921766073,
362
+ "eval_weighted_specificity": 0.9763347048555474,
363
+ "step": 7716
364
+ },
365
+ {
366
+ "epoch": 12.44,
367
+ "learning_rate": 2.926386728875065e-05,
368
+ "loss": 0.1291,
369
+ "step": 8000
370
+ },
371
+ {
372
+ "epoch": 13.0,
373
+ "eval_accuracy": 0.8233927188226181,
374
+ "eval_f1_macro": 0.7580847580681433,
375
+ "eval_f1_micro": 0.8233927188226181,
376
+ "eval_f1_weighted": 0.8211060746900526,
377
+ "eval_loss": 1.1460882425308228,
378
+ "eval_macro_fpr": 0.015717446624001503,
379
+ "eval_macro_sensitivity": 0.7612688033602836,
380
+ "eval_macro_specificity": 0.9866762703086498,
381
+ "eval_precision": 0.8215196709960565,
382
+ "eval_precision_macro": 0.7582432160976473,
383
+ "eval_recall": 0.8233927188226181,
384
+ "eval_recall_macro": 0.7612688033602836,
385
+ "eval_runtime": 32.7655,
386
+ "eval_samples_per_second": 39.401,
387
+ "eval_steps_per_second": 4.944,
388
+ "eval_weighted_fpr": 0.015089344804765056,
389
+ "eval_weighted_sensitivity": 0.8233927188226181,
390
+ "eval_weighted_specificity": 0.9767513358071301,
391
+ "step": 8359
392
+ },
393
+ {
394
+ "epoch": 13.22,
395
+ "learning_rate": 2.7967858994297562e-05,
396
+ "loss": 0.1213,
397
+ "step": 8500
398
+ },
399
+ {
400
+ "epoch": 14.0,
401
+ "learning_rate": 2.667185069984448e-05,
402
+ "loss": 0.11,
403
+ "step": 9000
404
+ },
405
+ {
406
+ "epoch": 14.0,
407
+ "eval_accuracy": 0.8226181254841208,
408
+ "eval_f1_macro": 0.7627437208061313,
409
+ "eval_f1_micro": 0.8226181254841208,
410
+ "eval_f1_weighted": 0.819453013970647,
411
+ "eval_loss": 1.1837199926376343,
412
+ "eval_macro_fpr": 0.01587279795090152,
413
+ "eval_macro_sensitivity": 0.7575723645459792,
414
+ "eval_macro_specificity": 0.98654524509664,
415
+ "eval_precision": 0.8182318569400476,
416
+ "eval_precision_macro": 0.7716010744976882,
417
+ "eval_recall": 0.8226181254841208,
418
+ "eval_recall_macro": 0.7575723645459792,
419
+ "eval_runtime": 32.1143,
420
+ "eval_samples_per_second": 40.2,
421
+ "eval_steps_per_second": 5.044,
422
+ "eval_weighted_fpr": 0.01516857653838511,
423
+ "eval_weighted_sensitivity": 0.8226181254841208,
424
+ "eval_weighted_specificity": 0.9755605509654802,
425
+ "step": 9002
426
+ },
427
+ {
428
+ "epoch": 14.77,
429
+ "learning_rate": 2.53758424053914e-05,
430
+ "loss": 0.0863,
431
+ "step": 9500
432
+ },
433
+ {
434
+ "epoch": 15.0,
435
+ "eval_accuracy": 0.8218435321456236,
436
+ "eval_f1_macro": 0.7497899545528302,
437
+ "eval_f1_micro": 0.8218435321456236,
438
+ "eval_f1_weighted": 0.818300724101517,
439
+ "eval_loss": 1.2020219564437866,
440
+ "eval_macro_fpr": 0.01596050778819386,
441
+ "eval_macro_sensitivity": 0.7457545376125337,
442
+ "eval_macro_specificity": 0.9864813469122803,
443
+ "eval_precision": 0.8185478073118013,
444
+ "eval_precision_macro": 0.7615551574586096,
445
+ "eval_recall": 0.8218435321456236,
446
+ "eval_recall_macro": 0.7457545376125337,
447
+ "eval_runtime": 32.9172,
448
+ "eval_samples_per_second": 39.22,
449
+ "eval_steps_per_second": 4.921,
450
+ "eval_weighted_fpr": 0.015247944842216919,
451
+ "eval_weighted_sensitivity": 0.8218435321456236,
452
+ "eval_weighted_specificity": 0.9753766715385808,
453
+ "step": 9645
454
+ },
455
+ {
456
+ "epoch": 15.55,
457
+ "learning_rate": 2.4079834110938313e-05,
458
+ "loss": 0.0735,
459
+ "step": 10000
460
+ },
461
+ {
462
+ "epoch": 16.0,
463
+ "eval_accuracy": 0.8187451587916343,
464
+ "eval_f1_macro": 0.7516626482517895,
465
+ "eval_f1_micro": 0.8187451587916342,
466
+ "eval_f1_weighted": 0.8167711468473488,
467
+ "eval_loss": 1.2490901947021484,
468
+ "eval_macro_fpr": 0.01615903013896019,
469
+ "eval_macro_sensitivity": 0.7463866263442519,
470
+ "eval_macro_specificity": 0.9862838939338255,
471
+ "eval_precision": 0.816010692122711,
472
+ "eval_precision_macro": 0.7620383054800749,
473
+ "eval_recall": 0.8187451587916343,
474
+ "eval_recall_macro": 0.7463866263442519,
475
+ "eval_runtime": 33.245,
476
+ "eval_samples_per_second": 38.833,
477
+ "eval_steps_per_second": 4.873,
478
+ "eval_weighted_fpr": 0.015566790846194785,
479
+ "eval_weighted_sensitivity": 0.8187451587916343,
480
+ "eval_weighted_specificity": 0.9755132502157504,
481
+ "step": 10288
482
+ },
483
+ {
484
+ "epoch": 16.33,
485
+ "learning_rate": 2.2783825816485228e-05,
486
+ "loss": 0.0802,
487
+ "step": 10500
488
+ },
489
+ {
490
+ "epoch": 17.0,
491
+ "eval_accuracy": 0.8164213787761425,
492
+ "eval_f1_macro": 0.7483467346361333,
493
+ "eval_f1_micro": 0.8164213787761425,
494
+ "eval_f1_weighted": 0.8152034106224548,
495
+ "eval_loss": 1.3287584781646729,
496
+ "eval_macro_fpr": 0.016411109243053838,
497
+ "eval_macro_sensitivity": 0.7530689671982778,
498
+ "eval_macro_specificity": 0.986197275429763,
499
+ "eval_precision": 0.8164986233001753,
500
+ "eval_precision_macro": 0.7471296868733558,
501
+ "eval_recall": 0.8164213787761425,
502
+ "eval_recall_macro": 0.7530689671982778,
503
+ "eval_runtime": 32.4097,
504
+ "eval_samples_per_second": 39.834,
505
+ "eval_steps_per_second": 4.999,
506
+ "eval_weighted_fpr": 0.01580737677582872,
507
+ "eval_weighted_sensitivity": 0.8164213787761425,
508
+ "eval_weighted_specificity": 0.9765377526703035,
509
+ "step": 10931
510
+ },
511
+ {
512
+ "epoch": 17.11,
513
+ "learning_rate": 2.1487817522032143e-05,
514
+ "loss": 0.0517,
515
+ "step": 11000
516
+ },
517
+ {
518
+ "epoch": 17.88,
519
+ "learning_rate": 2.0191809227579057e-05,
520
+ "loss": 0.0525,
521
+ "step": 11500
522
+ },
523
+ {
524
+ "epoch": 18.0,
525
+ "eval_accuracy": 0.8133230054221534,
526
+ "eval_f1_macro": 0.7486434952959435,
527
+ "eval_f1_micro": 0.8133230054221534,
528
+ "eval_f1_weighted": 0.8105673102840433,
529
+ "eval_loss": 1.3620411157608032,
530
+ "eval_macro_fpr": 0.016771971366343907,
531
+ "eval_macro_sensitivity": 0.747756174463169,
532
+ "eval_macro_specificity": 0.9859165137366713,
533
+ "eval_precision": 0.8127181738070712,
534
+ "eval_precision_macro": 0.7556869343254475,
535
+ "eval_recall": 0.8133230054221534,
536
+ "eval_recall_macro": 0.747756174463169,
537
+ "eval_runtime": 33.8455,
538
+ "eval_samples_per_second": 38.144,
539
+ "eval_steps_per_second": 4.786,
540
+ "eval_weighted_fpr": 0.016130111772973698,
541
+ "eval_weighted_sensitivity": 0.8133230054221534,
542
+ "eval_weighted_specificity": 0.9754247006279183,
543
+ "step": 11574
544
+ },
545
+ {
546
+ "epoch": 18.66,
547
+ "learning_rate": 1.8895800933125972e-05,
548
+ "loss": 0.0474,
549
+ "step": 12000
550
+ },
551
+ {
552
+ "epoch": 19.0,
553
+ "eval_accuracy": 0.8187451587916343,
554
+ "eval_f1_macro": 0.80243850868883,
555
+ "eval_f1_micro": 0.8187451587916342,
556
+ "eval_f1_weighted": 0.8186882142398059,
557
+ "eval_loss": 1.3783087730407715,
558
+ "eval_macro_fpr": 0.01616653707794279,
559
+ "eval_macro_sensitivity": 0.7971845339149931,
560
+ "eval_macro_specificity": 0.9862841415250829,
561
+ "eval_precision": 0.8219853895924313,
562
+ "eval_precision_macro": 0.8153974354587618,
563
+ "eval_recall": 0.8187451587916343,
564
+ "eval_recall_macro": 0.7971845339149931,
565
+ "eval_runtime": 34.0415,
566
+ "eval_samples_per_second": 37.924,
567
+ "eval_steps_per_second": 4.759,
568
+ "eval_weighted_fpr": 0.015566790846194785,
569
+ "eval_weighted_sensitivity": 0.8187451587916343,
570
+ "eval_weighted_specificity": 0.9755169640846107,
571
+ "step": 12217
572
+ },
573
+ {
574
+ "epoch": 19.44,
575
+ "learning_rate": 1.7599792638672887e-05,
576
+ "loss": 0.0315,
577
+ "step": 12500
578
+ },
579
+ {
580
+ "epoch": 20.0,
581
+ "eval_accuracy": 0.8226181254841208,
582
+ "eval_f1_macro": 0.790748766871484,
583
+ "eval_f1_micro": 0.8226181254841208,
584
+ "eval_f1_weighted": 0.8231232301620584,
585
+ "eval_loss": 1.400423288345337,
586
+ "eval_macro_fpr": 0.015694178732213588,
587
+ "eval_macro_sensitivity": 0.7910027660234611,
588
+ "eval_macro_specificity": 0.986694893115232,
589
+ "eval_precision": 0.8265938735422171,
590
+ "eval_precision_macro": 0.8011102381814037,
591
+ "eval_recall": 0.8226181254841208,
592
+ "eval_recall_macro": 0.7910027660234611,
593
+ "eval_runtime": 33.3314,
594
+ "eval_samples_per_second": 38.732,
595
+ "eval_steps_per_second": 4.86,
596
+ "eval_weighted_fpr": 0.01516857653838511,
597
+ "eval_weighted_sensitivity": 0.8226181254841208,
598
+ "eval_weighted_specificity": 0.9778052712443601,
599
+ "step": 12860
600
+ },
601
+ {
602
+ "epoch": 20.22,
603
+ "learning_rate": 1.6303784344219805e-05,
604
+ "loss": 0.0379,
605
+ "step": 13000
606
+ },
607
+ {
608
+ "epoch": 21.0,
609
+ "learning_rate": 1.500777604976672e-05,
610
+ "loss": 0.0325,
611
+ "step": 13500
612
+ },
613
+ {
614
+ "epoch": 21.0,
615
+ "eval_accuracy": 0.8187451587916343,
616
+ "eval_f1_macro": 0.7920531234982356,
617
+ "eval_f1_micro": 0.8187451587916342,
618
+ "eval_f1_weighted": 0.8182432240494799,
619
+ "eval_loss": 1.4682910442352295,
620
+ "eval_macro_fpr": 0.016122147142737502,
621
+ "eval_macro_sensitivity": 0.7876294399760013,
622
+ "eval_macro_specificity": 0.9863487423677417,
623
+ "eval_precision": 0.8197947092422727,
624
+ "eval_precision_macro": 0.8030038288855238,
625
+ "eval_recall": 0.8187451587916343,
626
+ "eval_recall_macro": 0.7876294399760013,
627
+ "eval_runtime": 34.2442,
628
+ "eval_samples_per_second": 37.7,
629
+ "eval_steps_per_second": 4.731,
630
+ "eval_weighted_fpr": 0.015566790846194785,
631
+ "eval_weighted_sensitivity": 0.8187451587916343,
632
+ "eval_weighted_specificity": 0.9764859767244947,
633
+ "step": 13503
634
+ },
635
+ {
636
+ "epoch": 21.77,
637
+ "learning_rate": 1.3711767755313634e-05,
638
+ "loss": 0.0192,
639
+ "step": 14000
640
+ },
641
+ {
642
+ "epoch": 22.0,
643
+ "eval_accuracy": 0.8249419054996127,
644
+ "eval_f1_macro": 0.7504682467692924,
645
+ "eval_f1_micro": 0.8249419054996127,
646
+ "eval_f1_weighted": 0.8224843150628982,
647
+ "eval_loss": 1.4677306413650513,
648
+ "eval_macro_fpr": 0.015516813070862829,
649
+ "eval_macro_sensitivity": 0.7482417751600471,
650
+ "eval_macro_specificity": 0.9867827508352239,
651
+ "eval_precision": 0.822350100430648,
652
+ "eval_precision_macro": 0.7598136028014526,
653
+ "eval_recall": 0.8249419054996127,
654
+ "eval_recall_macro": 0.7482417751600471,
655
+ "eval_runtime": 33.3005,
656
+ "eval_samples_per_second": 38.768,
657
+ "eval_steps_per_second": 4.865,
658
+ "eval_weighted_fpr": 0.014931289640591967,
659
+ "eval_weighted_sensitivity": 0.8249419054996127,
660
+ "eval_weighted_specificity": 0.9767993570287478,
661
+ "step": 14146
662
+ }
663
+ ],
664
+ "logging_steps": 500,
665
+ "max_steps": 19290,
666
+ "num_train_epochs": 30,
667
+ "save_steps": 500,
668
+ "total_flos": 3.067869678199603e+16,
669
+ "trial_name": null,
670
+ "trial_params": null
671
+ }
training_checkpoints/checkpoint-14146/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bdaaee2ea8c5545699d181a8364cb087d92c47cb0d5f67dcc808085b20d2a66a
3
+ size 4600
training_checkpoints/checkpoint-14146/vocab.txt ADDED
The diff for this file is too large to render. See raw diff