Upload folder using huggingface_hub
Browse files- training_checkpoints/checkpoint-10288/README.md +204 -0
- training_checkpoints/checkpoint-10288/adapter_config.json +31 -0
- training_checkpoints/checkpoint-10288/adapter_model.safetensors +3 -0
- training_checkpoints/checkpoint-10288/added_tokens.json +3 -0
- training_checkpoints/checkpoint-10288/optimizer.pt +3 -0
- training_checkpoints/checkpoint-10288/rng_state.pth +3 -0
- training_checkpoints/checkpoint-10288/scheduler.pt +3 -0
- training_checkpoints/checkpoint-10288/special_tokens_map.json +13 -0
- training_checkpoints/checkpoint-10288/tokenizer.json +0 -0
- training_checkpoints/checkpoint-10288/tokenizer_config.json +65 -0
- training_checkpoints/checkpoint-10288/trainer_state.json +491 -0
- training_checkpoints/checkpoint-10288/training_args.bin +3 -0
- training_checkpoints/checkpoint-10288/vocab.txt +0 -0
training_checkpoints/checkpoint-10288/README.md
ADDED
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: nlpaueb/legal-bert-base-uncased
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
|
201 |
+
|
202 |
+
### Framework versions
|
203 |
+
|
204 |
+
- PEFT 0.10.0
|
training_checkpoints/checkpoint-10288/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "nlpaueb/legal-bert-base-uncased",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 64,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 16,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"dense",
|
24 |
+
"key",
|
25 |
+
"query",
|
26 |
+
"value"
|
27 |
+
],
|
28 |
+
"task_type": "SEQ_CLS",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
training_checkpoints/checkpoint-10288/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:86303010fbded60b22bf341a1d813894c8478e58ccf30900f2daf5c46087e5d0
|
3 |
+
size 104549068
|
training_checkpoints/checkpoint-10288/added_tokens.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<pad>": 30522
|
3 |
+
}
|
training_checkpoints/checkpoint-10288/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cae03b13d654f2fa9a6944314908089f13291fb3d82bf66ae057e11c2f5be97d
|
3 |
+
size 21646778
|
training_checkpoints/checkpoint-10288/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:718c559fa644d691bd8d154b23db83227c8f024c417aa969c1f71cd3f5e689ef
|
3 |
+
size 14244
|
training_checkpoints/checkpoint-10288/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7967d5f7a76d7d4c506283d5753cf5cdf479b1d34986e25783b864c88763caf2
|
3 |
+
size 1064
|
training_checkpoints/checkpoint-10288/special_tokens_map.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": {
|
5 |
+
"content": "<pad>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false
|
10 |
+
},
|
11 |
+
"sep_token": "[SEP]",
|
12 |
+
"unk_token": "[UNK]"
|
13 |
+
}
|
training_checkpoints/checkpoint-10288/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training_checkpoints/checkpoint-10288/tokenizer_config.json
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"30522": {
|
44 |
+
"content": "<pad>",
|
45 |
+
"lstrip": false,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
}
|
51 |
+
},
|
52 |
+
"clean_up_tokenization_spaces": true,
|
53 |
+
"cls_token": "[CLS]",
|
54 |
+
"do_basic_tokenize": true,
|
55 |
+
"do_lower_case": true,
|
56 |
+
"mask_token": "[MASK]",
|
57 |
+
"model_max_length": 512,
|
58 |
+
"never_split": null,
|
59 |
+
"pad_token": "<pad>",
|
60 |
+
"sep_token": "[SEP]",
|
61 |
+
"strip_accents": null,
|
62 |
+
"tokenize_chinese_chars": true,
|
63 |
+
"tokenizer_class": "BertTokenizer",
|
64 |
+
"unk_token": "[UNK]"
|
65 |
+
}
|
training_checkpoints/checkpoint-10288/trainer_state.json
ADDED
@@ -0,0 +1,491 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.767473750579757,
|
3 |
+
"best_model_checkpoint": "legal-bert-lora-no-grad/checkpoint-7073",
|
4 |
+
"epoch": 16.0,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 10288,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.78,
|
13 |
+
"learning_rate": 4.870399170554692e-05,
|
14 |
+
"loss": 1.5473,
|
15 |
+
"step": 500
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"epoch": 1.0,
|
19 |
+
"eval_accuracy": 0.7172734314484895,
|
20 |
+
"eval_f1_macro": 0.3920432121625908,
|
21 |
+
"eval_f1_micro": 0.7172734314484894,
|
22 |
+
"eval_f1_weighted": 0.6868869808248764,
|
23 |
+
"eval_loss": 0.8484711050987244,
|
24 |
+
"eval_macro_fpr": 0.027836504093424867,
|
25 |
+
"eval_macro_sensitivity": 0.44215864388540455,
|
26 |
+
"eval_macro_specificity": 0.9788744549045134,
|
27 |
+
"eval_precision": 0.6896842532804647,
|
28 |
+
"eval_precision_macro": 0.3892290687521846,
|
29 |
+
"eval_recall": 0.7172734314484895,
|
30 |
+
"eval_recall_macro": 0.44215864388540455,
|
31 |
+
"eval_runtime": 32.4222,
|
32 |
+
"eval_samples_per_second": 39.818,
|
33 |
+
"eval_steps_per_second": 4.997,
|
34 |
+
"eval_weighted_fpr": 0.027383899767424412,
|
35 |
+
"eval_weighted_sensitivity": 0.7172734314484895,
|
36 |
+
"eval_weighted_specificity": 0.9658433921192108,
|
37 |
+
"step": 643
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 1.56,
|
41 |
+
"learning_rate": 4.740798341109383e-05,
|
42 |
+
"loss": 0.7816,
|
43 |
+
"step": 1000
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"epoch": 2.0,
|
47 |
+
"eval_accuracy": 0.7544539116963594,
|
48 |
+
"eval_f1_macro": 0.47513531679703136,
|
49 |
+
"eval_f1_micro": 0.7544539116963594,
|
50 |
+
"eval_f1_weighted": 0.7304002619527014,
|
51 |
+
"eval_loss": 0.7113391757011414,
|
52 |
+
"eval_macro_fpr": 0.023051270843305598,
|
53 |
+
"eval_macro_sensitivity": 0.5054156753128263,
|
54 |
+
"eval_macro_specificity": 0.9817050378554314,
|
55 |
+
"eval_precision": 0.7491876907285084,
|
56 |
+
"eval_precision_macro": 0.5281699878111706,
|
57 |
+
"eval_recall": 0.7544539116963594,
|
58 |
+
"eval_recall_macro": 0.5054156753128263,
|
59 |
+
"eval_runtime": 33.6622,
|
60 |
+
"eval_samples_per_second": 38.352,
|
61 |
+
"eval_steps_per_second": 4.813,
|
62 |
+
"eval_weighted_fpr": 0.02271912850283093,
|
63 |
+
"eval_weighted_sensitivity": 0.7544539116963594,
|
64 |
+
"eval_weighted_specificity": 0.9711216561351127,
|
65 |
+
"step": 1286
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 2.33,
|
69 |
+
"learning_rate": 4.6111975116640746e-05,
|
70 |
+
"loss": 0.6956,
|
71 |
+
"step": 1500
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"epoch": 3.0,
|
75 |
+
"eval_accuracy": 0.7986057319907048,
|
76 |
+
"eval_f1_macro": 0.5439483491438576,
|
77 |
+
"eval_f1_micro": 0.7986057319907048,
|
78 |
+
"eval_f1_weighted": 0.7833451448204543,
|
79 |
+
"eval_loss": 0.6460158824920654,
|
80 |
+
"eval_macro_fpr": 0.01844352926124183,
|
81 |
+
"eval_macro_sensitivity": 0.5700868724489073,
|
82 |
+
"eval_macro_specificity": 0.9848453217277398,
|
83 |
+
"eval_precision": 0.7793241511142787,
|
84 |
+
"eval_precision_macro": 0.5435553848320287,
|
85 |
+
"eval_recall": 0.7986057319907048,
|
86 |
+
"eval_recall_macro": 0.5700868724489073,
|
87 |
+
"eval_runtime": 33.205,
|
88 |
+
"eval_samples_per_second": 38.88,
|
89 |
+
"eval_steps_per_second": 4.879,
|
90 |
+
"eval_weighted_fpr": 0.01769429699196951,
|
91 |
+
"eval_weighted_sensitivity": 0.7986057319907048,
|
92 |
+
"eval_weighted_specificity": 0.974074093925392,
|
93 |
+
"step": 1929
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 3.11,
|
97 |
+
"learning_rate": 4.481596682218767e-05,
|
98 |
+
"loss": 0.6117,
|
99 |
+
"step": 2000
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 3.89,
|
103 |
+
"learning_rate": 4.3519958527734576e-05,
|
104 |
+
"loss": 0.4942,
|
105 |
+
"step": 2500
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"epoch": 4.0,
|
109 |
+
"eval_accuracy": 0.8109992254066615,
|
110 |
+
"eval_f1_macro": 0.641318903734146,
|
111 |
+
"eval_f1_micro": 0.8109992254066615,
|
112 |
+
"eval_f1_weighted": 0.8036671817127167,
|
113 |
+
"eval_loss": 0.6429558992385864,
|
114 |
+
"eval_macro_fpr": 0.016902452669854486,
|
115 |
+
"eval_macro_sensitivity": 0.6670193163886222,
|
116 |
+
"eval_macro_specificity": 0.9858199536379567,
|
117 |
+
"eval_precision": 0.8014184747492699,
|
118 |
+
"eval_precision_macro": 0.6315294283267076,
|
119 |
+
"eval_recall": 0.8109992254066615,
|
120 |
+
"eval_recall_macro": 0.6670193163886222,
|
121 |
+
"eval_runtime": 34.2851,
|
122 |
+
"eval_samples_per_second": 37.655,
|
123 |
+
"eval_steps_per_second": 4.725,
|
124 |
+
"eval_weighted_fpr": 0.016373641121997046,
|
125 |
+
"eval_weighted_sensitivity": 0.8109992254066615,
|
126 |
+
"eval_weighted_specificity": 0.9763000791626885,
|
127 |
+
"step": 2572
|
128 |
+
},
|
129 |
+
{
|
130 |
+
"epoch": 4.67,
|
131 |
+
"learning_rate": 4.22239502332815e-05,
|
132 |
+
"loss": 0.4088,
|
133 |
+
"step": 3000
|
134 |
+
},
|
135 |
+
{
|
136 |
+
"epoch": 5.0,
|
137 |
+
"eval_accuracy": 0.8319132455460883,
|
138 |
+
"eval_f1_macro": 0.7458887908906745,
|
139 |
+
"eval_f1_micro": 0.8319132455460883,
|
140 |
+
"eval_f1_weighted": 0.8254435175521364,
|
141 |
+
"eval_loss": 0.7148057222366333,
|
142 |
+
"eval_macro_fpr": 0.015014171873602745,
|
143 |
+
"eval_macro_sensitivity": 0.7444010739541649,
|
144 |
+
"eval_macro_specificity": 0.9871775908314393,
|
145 |
+
"eval_precision": 0.8301095647411415,
|
146 |
+
"eval_precision_macro": 0.795128331887366,
|
147 |
+
"eval_recall": 0.8319132455460883,
|
148 |
+
"eval_recall_macro": 0.7444010739541649,
|
149 |
+
"eval_runtime": 32.6496,
|
150 |
+
"eval_samples_per_second": 39.541,
|
151 |
+
"eval_steps_per_second": 4.962,
|
152 |
+
"eval_weighted_fpr": 0.014226709499770536,
|
153 |
+
"eval_weighted_sensitivity": 0.8319132455460883,
|
154 |
+
"eval_weighted_specificity": 0.9757506169255016,
|
155 |
+
"step": 3215
|
156 |
+
},
|
157 |
+
{
|
158 |
+
"epoch": 5.44,
|
159 |
+
"learning_rate": 4.092794193882841e-05,
|
160 |
+
"loss": 0.3722,
|
161 |
+
"step": 3500
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"epoch": 6.0,
|
165 |
+
"eval_accuracy": 0.8319132455460883,
|
166 |
+
"eval_f1_macro": 0.7581556537237687,
|
167 |
+
"eval_f1_micro": 0.8319132455460883,
|
168 |
+
"eval_f1_weighted": 0.8284954274383471,
|
169 |
+
"eval_loss": 0.7203006744384766,
|
170 |
+
"eval_macro_fpr": 0.014862611036154928,
|
171 |
+
"eval_macro_sensitivity": 0.7604143289637364,
|
172 |
+
"eval_macro_specificity": 0.9873237068761225,
|
173 |
+
"eval_precision": 0.8282196199964869,
|
174 |
+
"eval_precision_macro": 0.7594204389852343,
|
175 |
+
"eval_recall": 0.8319132455460883,
|
176 |
+
"eval_recall_macro": 0.7604143289637364,
|
177 |
+
"eval_runtime": 32.5293,
|
178 |
+
"eval_samples_per_second": 39.687,
|
179 |
+
"eval_steps_per_second": 4.98,
|
180 |
+
"eval_weighted_fpr": 0.014226709499770536,
|
181 |
+
"eval_weighted_sensitivity": 0.8319132455460883,
|
182 |
+
"eval_weighted_specificity": 0.9779423575957491,
|
183 |
+
"step": 3858
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"epoch": 6.22,
|
187 |
+
"learning_rate": 3.963193364437533e-05,
|
188 |
+
"loss": 0.3518,
|
189 |
+
"step": 4000
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 7.0,
|
193 |
+
"learning_rate": 3.833592534992224e-05,
|
194 |
+
"loss": 0.3088,
|
195 |
+
"step": 4500
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"epoch": 7.0,
|
199 |
+
"eval_accuracy": 0.8218435321456236,
|
200 |
+
"eval_f1_macro": 0.748587043102148,
|
201 |
+
"eval_f1_micro": 0.8218435321456236,
|
202 |
+
"eval_f1_weighted": 0.8202672850983224,
|
203 |
+
"eval_loss": 0.7796419858932495,
|
204 |
+
"eval_macro_fpr": 0.015766934174909337,
|
205 |
+
"eval_macro_sensitivity": 0.7436163865406156,
|
206 |
+
"eval_macro_specificity": 0.986554823310482,
|
207 |
+
"eval_precision": 0.8283195435686048,
|
208 |
+
"eval_precision_macro": 0.7927343403715958,
|
209 |
+
"eval_recall": 0.8218435321456236,
|
210 |
+
"eval_recall_macro": 0.7436163865406156,
|
211 |
+
"eval_runtime": 33.9886,
|
212 |
+
"eval_samples_per_second": 37.983,
|
213 |
+
"eval_steps_per_second": 4.766,
|
214 |
+
"eval_weighted_fpr": 0.015247944842216919,
|
215 |
+
"eval_weighted_sensitivity": 0.8218435321456236,
|
216 |
+
"eval_weighted_specificity": 0.9764788175116066,
|
217 |
+
"step": 4501
|
218 |
+
},
|
219 |
+
{
|
220 |
+
"epoch": 7.78,
|
221 |
+
"learning_rate": 3.7039917055469156e-05,
|
222 |
+
"loss": 0.245,
|
223 |
+
"step": 5000
|
224 |
+
},
|
225 |
+
{
|
226 |
+
"epoch": 8.0,
|
227 |
+
"eval_accuracy": 0.8187451587916343,
|
228 |
+
"eval_f1_macro": 0.7408588571905798,
|
229 |
+
"eval_f1_micro": 0.8187451587916342,
|
230 |
+
"eval_f1_weighted": 0.8134714190372911,
|
231 |
+
"eval_loss": 0.8731526136398315,
|
232 |
+
"eval_macro_fpr": 0.016323302917471562,
|
233 |
+
"eval_macro_sensitivity": 0.7403464639779053,
|
234 |
+
"eval_macro_specificity": 0.98626453049897,
|
235 |
+
"eval_precision": 0.8170725248278505,
|
236 |
+
"eval_precision_macro": 0.7696333486311014,
|
237 |
+
"eval_recall": 0.8187451587916343,
|
238 |
+
"eval_recall_macro": 0.7403464639779053,
|
239 |
+
"eval_runtime": 32.6647,
|
240 |
+
"eval_samples_per_second": 39.523,
|
241 |
+
"eval_steps_per_second": 4.959,
|
242 |
+
"eval_weighted_fpr": 0.015566790846194785,
|
243 |
+
"eval_weighted_sensitivity": 0.8187451587916343,
|
244 |
+
"eval_weighted_specificity": 0.9752227986929156,
|
245 |
+
"step": 5144
|
246 |
+
},
|
247 |
+
{
|
248 |
+
"epoch": 8.55,
|
249 |
+
"learning_rate": 3.574390876101607e-05,
|
250 |
+
"loss": 0.2331,
|
251 |
+
"step": 5500
|
252 |
+
},
|
253 |
+
{
|
254 |
+
"epoch": 9.0,
|
255 |
+
"eval_accuracy": 0.8264910921766073,
|
256 |
+
"eval_f1_macro": 0.753016641591601,
|
257 |
+
"eval_f1_micro": 0.8264910921766073,
|
258 |
+
"eval_f1_weighted": 0.8260538424611459,
|
259 |
+
"eval_loss": 0.871034562587738,
|
260 |
+
"eval_macro_fpr": 0.015223198880351374,
|
261 |
+
"eval_macro_sensitivity": 0.7521384355359189,
|
262 |
+
"eval_macro_specificity": 0.9869379376488985,
|
263 |
+
"eval_precision": 0.8280339150697505,
|
264 |
+
"eval_precision_macro": 0.7595158765535532,
|
265 |
+
"eval_recall": 0.8264910921766073,
|
266 |
+
"eval_recall_macro": 0.7521384355359189,
|
267 |
+
"eval_runtime": 32.6231,
|
268 |
+
"eval_samples_per_second": 39.573,
|
269 |
+
"eval_steps_per_second": 4.966,
|
270 |
+
"eval_weighted_fpr": 0.014773776546629732,
|
271 |
+
"eval_weighted_sensitivity": 0.8264910921766073,
|
272 |
+
"eval_weighted_specificity": 0.9775779725568708,
|
273 |
+
"step": 5787
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"epoch": 9.33,
|
277 |
+
"learning_rate": 3.4447900466562985e-05,
|
278 |
+
"loss": 0.1878,
|
279 |
+
"step": 6000
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 10.0,
|
283 |
+
"eval_accuracy": 0.82571649883811,
|
284 |
+
"eval_f1_macro": 0.7588436992559459,
|
285 |
+
"eval_f1_micro": 0.82571649883811,
|
286 |
+
"eval_f1_weighted": 0.8239752092365729,
|
287 |
+
"eval_loss": 0.9866135120391846,
|
288 |
+
"eval_macro_fpr": 0.015306627243977184,
|
289 |
+
"eval_macro_sensitivity": 0.7603889662202937,
|
290 |
+
"eval_macro_specificity": 0.9869690054538824,
|
291 |
+
"eval_precision": 0.8260731585047043,
|
292 |
+
"eval_precision_macro": 0.7672111037553849,
|
293 |
+
"eval_recall": 0.82571649883811,
|
294 |
+
"eval_recall_macro": 0.7603889662202937,
|
295 |
+
"eval_runtime": 33.5564,
|
296 |
+
"eval_samples_per_second": 38.473,
|
297 |
+
"eval_steps_per_second": 4.828,
|
298 |
+
"eval_weighted_fpr": 0.01485246550927454,
|
299 |
+
"eval_weighted_sensitivity": 0.82571649883811,
|
300 |
+
"eval_weighted_specificity": 0.9788185829701274,
|
301 |
+
"step": 6430
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 10.11,
|
305 |
+
"learning_rate": 3.315189217210991e-05,
|
306 |
+
"loss": 0.1934,
|
307 |
+
"step": 6500
|
308 |
+
},
|
309 |
+
{
|
310 |
+
"epoch": 10.89,
|
311 |
+
"learning_rate": 3.1855883877656815e-05,
|
312 |
+
"loss": 0.1627,
|
313 |
+
"step": 7000
|
314 |
+
},
|
315 |
+
{
|
316 |
+
"epoch": 11.0,
|
317 |
+
"eval_accuracy": 0.82571649883811,
|
318 |
+
"eval_f1_macro": 0.767473750579757,
|
319 |
+
"eval_f1_micro": 0.82571649883811,
|
320 |
+
"eval_f1_weighted": 0.8233713451484083,
|
321 |
+
"eval_loss": 1.0529617071151733,
|
322 |
+
"eval_macro_fpr": 0.015351918387195561,
|
323 |
+
"eval_macro_sensitivity": 0.7711152769110098,
|
324 |
+
"eval_macro_specificity": 0.9869581108070966,
|
325 |
+
"eval_precision": 0.8268711216555169,
|
326 |
+
"eval_precision_macro": 0.7706107626580333,
|
327 |
+
"eval_recall": 0.82571649883811,
|
328 |
+
"eval_recall_macro": 0.7711152769110098,
|
329 |
+
"eval_runtime": 32.7851,
|
330 |
+
"eval_samples_per_second": 39.378,
|
331 |
+
"eval_steps_per_second": 4.941,
|
332 |
+
"eval_weighted_fpr": 0.01485246550927454,
|
333 |
+
"eval_weighted_sensitivity": 0.82571649883811,
|
334 |
+
"eval_weighted_specificity": 0.9786551632683399,
|
335 |
+
"step": 7073
|
336 |
+
},
|
337 |
+
{
|
338 |
+
"epoch": 11.66,
|
339 |
+
"learning_rate": 3.0559875583203736e-05,
|
340 |
+
"loss": 0.1301,
|
341 |
+
"step": 7500
|
342 |
+
},
|
343 |
+
{
|
344 |
+
"epoch": 12.0,
|
345 |
+
"eval_accuracy": 0.8264910921766073,
|
346 |
+
"eval_f1_macro": 0.7575609282906195,
|
347 |
+
"eval_f1_micro": 0.8264910921766073,
|
348 |
+
"eval_f1_weighted": 0.8227831044737154,
|
349 |
+
"eval_loss": 1.1041574478149414,
|
350 |
+
"eval_macro_fpr": 0.015507747324292978,
|
351 |
+
"eval_macro_sensitivity": 0.7586841377838723,
|
352 |
+
"eval_macro_specificity": 0.986855053135477,
|
353 |
+
"eval_precision": 0.8246142974152224,
|
354 |
+
"eval_precision_macro": 0.7633072608154402,
|
355 |
+
"eval_recall": 0.8264910921766073,
|
356 |
+
"eval_recall_macro": 0.7586841377838723,
|
357 |
+
"eval_runtime": 33.2755,
|
358 |
+
"eval_samples_per_second": 38.797,
|
359 |
+
"eval_steps_per_second": 4.868,
|
360 |
+
"eval_weighted_fpr": 0.014773776546629732,
|
361 |
+
"eval_weighted_sensitivity": 0.8264910921766073,
|
362 |
+
"eval_weighted_specificity": 0.9763347048555474,
|
363 |
+
"step": 7716
|
364 |
+
},
|
365 |
+
{
|
366 |
+
"epoch": 12.44,
|
367 |
+
"learning_rate": 2.926386728875065e-05,
|
368 |
+
"loss": 0.1291,
|
369 |
+
"step": 8000
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 13.0,
|
373 |
+
"eval_accuracy": 0.8233927188226181,
|
374 |
+
"eval_f1_macro": 0.7580847580681433,
|
375 |
+
"eval_f1_micro": 0.8233927188226181,
|
376 |
+
"eval_f1_weighted": 0.8211060746900526,
|
377 |
+
"eval_loss": 1.1460882425308228,
|
378 |
+
"eval_macro_fpr": 0.015717446624001503,
|
379 |
+
"eval_macro_sensitivity": 0.7612688033602836,
|
380 |
+
"eval_macro_specificity": 0.9866762703086498,
|
381 |
+
"eval_precision": 0.8215196709960565,
|
382 |
+
"eval_precision_macro": 0.7582432160976473,
|
383 |
+
"eval_recall": 0.8233927188226181,
|
384 |
+
"eval_recall_macro": 0.7612688033602836,
|
385 |
+
"eval_runtime": 32.7655,
|
386 |
+
"eval_samples_per_second": 39.401,
|
387 |
+
"eval_steps_per_second": 4.944,
|
388 |
+
"eval_weighted_fpr": 0.015089344804765056,
|
389 |
+
"eval_weighted_sensitivity": 0.8233927188226181,
|
390 |
+
"eval_weighted_specificity": 0.9767513358071301,
|
391 |
+
"step": 8359
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 13.22,
|
395 |
+
"learning_rate": 2.7967858994297562e-05,
|
396 |
+
"loss": 0.1213,
|
397 |
+
"step": 8500
|
398 |
+
},
|
399 |
+
{
|
400 |
+
"epoch": 14.0,
|
401 |
+
"learning_rate": 2.667185069984448e-05,
|
402 |
+
"loss": 0.11,
|
403 |
+
"step": 9000
|
404 |
+
},
|
405 |
+
{
|
406 |
+
"epoch": 14.0,
|
407 |
+
"eval_accuracy": 0.8226181254841208,
|
408 |
+
"eval_f1_macro": 0.7627437208061313,
|
409 |
+
"eval_f1_micro": 0.8226181254841208,
|
410 |
+
"eval_f1_weighted": 0.819453013970647,
|
411 |
+
"eval_loss": 1.1837199926376343,
|
412 |
+
"eval_macro_fpr": 0.01587279795090152,
|
413 |
+
"eval_macro_sensitivity": 0.7575723645459792,
|
414 |
+
"eval_macro_specificity": 0.98654524509664,
|
415 |
+
"eval_precision": 0.8182318569400476,
|
416 |
+
"eval_precision_macro": 0.7716010744976882,
|
417 |
+
"eval_recall": 0.8226181254841208,
|
418 |
+
"eval_recall_macro": 0.7575723645459792,
|
419 |
+
"eval_runtime": 32.1143,
|
420 |
+
"eval_samples_per_second": 40.2,
|
421 |
+
"eval_steps_per_second": 5.044,
|
422 |
+
"eval_weighted_fpr": 0.01516857653838511,
|
423 |
+
"eval_weighted_sensitivity": 0.8226181254841208,
|
424 |
+
"eval_weighted_specificity": 0.9755605509654802,
|
425 |
+
"step": 9002
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"epoch": 14.77,
|
429 |
+
"learning_rate": 2.53758424053914e-05,
|
430 |
+
"loss": 0.0863,
|
431 |
+
"step": 9500
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"epoch": 15.0,
|
435 |
+
"eval_accuracy": 0.8218435321456236,
|
436 |
+
"eval_f1_macro": 0.7497899545528302,
|
437 |
+
"eval_f1_micro": 0.8218435321456236,
|
438 |
+
"eval_f1_weighted": 0.818300724101517,
|
439 |
+
"eval_loss": 1.2020219564437866,
|
440 |
+
"eval_macro_fpr": 0.01596050778819386,
|
441 |
+
"eval_macro_sensitivity": 0.7457545376125337,
|
442 |
+
"eval_macro_specificity": 0.9864813469122803,
|
443 |
+
"eval_precision": 0.8185478073118013,
|
444 |
+
"eval_precision_macro": 0.7615551574586096,
|
445 |
+
"eval_recall": 0.8218435321456236,
|
446 |
+
"eval_recall_macro": 0.7457545376125337,
|
447 |
+
"eval_runtime": 32.9172,
|
448 |
+
"eval_samples_per_second": 39.22,
|
449 |
+
"eval_steps_per_second": 4.921,
|
450 |
+
"eval_weighted_fpr": 0.015247944842216919,
|
451 |
+
"eval_weighted_sensitivity": 0.8218435321456236,
|
452 |
+
"eval_weighted_specificity": 0.9753766715385808,
|
453 |
+
"step": 9645
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"epoch": 15.55,
|
457 |
+
"learning_rate": 2.4079834110938313e-05,
|
458 |
+
"loss": 0.0735,
|
459 |
+
"step": 10000
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 16.0,
|
463 |
+
"eval_accuracy": 0.8187451587916343,
|
464 |
+
"eval_f1_macro": 0.7516626482517895,
|
465 |
+
"eval_f1_micro": 0.8187451587916342,
|
466 |
+
"eval_f1_weighted": 0.8167711468473488,
|
467 |
+
"eval_loss": 1.2490901947021484,
|
468 |
+
"eval_macro_fpr": 0.01615903013896019,
|
469 |
+
"eval_macro_sensitivity": 0.7463866263442519,
|
470 |
+
"eval_macro_specificity": 0.9862838939338255,
|
471 |
+
"eval_precision": 0.816010692122711,
|
472 |
+
"eval_precision_macro": 0.7620383054800749,
|
473 |
+
"eval_recall": 0.8187451587916343,
|
474 |
+
"eval_recall_macro": 0.7463866263442519,
|
475 |
+
"eval_runtime": 33.245,
|
476 |
+
"eval_samples_per_second": 38.833,
|
477 |
+
"eval_steps_per_second": 4.873,
|
478 |
+
"eval_weighted_fpr": 0.015566790846194785,
|
479 |
+
"eval_weighted_sensitivity": 0.8187451587916343,
|
480 |
+
"eval_weighted_specificity": 0.9755132502157504,
|
481 |
+
"step": 10288
|
482 |
+
}
|
483 |
+
],
|
484 |
+
"logging_steps": 500,
|
485 |
+
"max_steps": 19290,
|
486 |
+
"num_train_epochs": 30,
|
487 |
+
"save_steps": 500,
|
488 |
+
"total_flos": 2.2311779477815296e+16,
|
489 |
+
"trial_name": null,
|
490 |
+
"trial_params": null
|
491 |
+
}
|
training_checkpoints/checkpoint-10288/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bdaaee2ea8c5545699d181a8364cb087d92c47cb0d5f67dcc808085b20d2a66a
|
3 |
+
size 4600
|
training_checkpoints/checkpoint-10288/vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|