metadata
license: apache-2.0
tags:
- generated_from_trainer
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
metrics:
- accuracy
- precision
- recall
model-index:
- name: tiny-llama-lora-new
results: []
tiny-llama-lora-new
This model is a fine-tuned version of TinyLlama/TinyLlama-1.1B-Chat-v1.0 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.2252
- Accuracy: 0.8203
- Precision: 0.8184
- Recall: 0.8203
- Precision Macro: 0.7732
- Recall Macro: 0.7380
- Macro Fpr: 0.0162
- Weighted Fpr: 0.0154
- Weighted Specificity: 0.9743
- Macro Specificity: 0.9863
- Weighted Sensitivity: 0.8203
- Macro Sensitivity: 0.7380
- F1 Micro: 0.8203
- F1 Macro: 0.7435
- F1 Weighted: 0.8173
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | Precision Macro | Recall Macro | Macro Fpr | Weighted Fpr | Weighted Specificity | Macro Specificity | Weighted Sensitivity | Macro Sensitivity | F1 Micro | F1 Macro | F1 Weighted |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 160 | 0.6615 | 0.8002 | 0.8040 | 0.8002 | 0.7266 | 0.6678 | 0.0182 | 0.0175 | 0.9726 | 0.9848 | 0.8002 | 0.6678 | 0.8002 | 0.6790 | 0.7959 |
No log | 2.0 | 321 | 0.6996 | 0.8064 | 0.8110 | 0.8064 | 0.7448 | 0.7207 | 0.0177 | 0.0169 | 0.9737 | 0.9853 | 0.8064 | 0.7207 | 0.8064 | 0.7235 | 0.8039 |
No log | 3.0 | 482 | 0.8202 | 0.8125 | 0.8119 | 0.8125 | 0.7577 | 0.7080 | 0.0171 | 0.0162 | 0.9711 | 0.9856 | 0.8125 | 0.7080 | 0.8125 | 0.7180 | 0.8085 |
0.2932 | 4.0 | 643 | 0.9493 | 0.8141 | 0.8204 | 0.8141 | 0.7593 | 0.7327 | 0.0166 | 0.0160 | 0.9744 | 0.9859 | 0.8141 | 0.7327 | 0.8141 | 0.7415 | 0.8154 |
0.2932 | 5.0 | 803 | 1.0610 | 0.8110 | 0.8110 | 0.8110 | 0.7596 | 0.7427 | 0.0172 | 0.0164 | 0.9738 | 0.9857 | 0.8110 | 0.7427 | 0.8110 | 0.7413 | 0.8087 |
0.2932 | 6.0 | 964 | 1.1362 | 0.8149 | 0.8160 | 0.8149 | 0.7731 | 0.7380 | 0.0167 | 0.0160 | 0.9741 | 0.9859 | 0.8149 | 0.7380 | 0.8149 | 0.7408 | 0.8128 |
0.0107 | 7.0 | 1125 | 1.1713 | 0.8102 | 0.8123 | 0.8102 | 0.7734 | 0.7310 | 0.0171 | 0.0165 | 0.9736 | 0.9856 | 0.8102 | 0.7310 | 0.8102 | 0.7343 | 0.8085 |
0.0107 | 8.0 | 1286 | 1.1786 | 0.8156 | 0.8141 | 0.8156 | 0.7656 | 0.7349 | 0.0166 | 0.0159 | 0.9740 | 0.9860 | 0.8156 | 0.7349 | 0.8156 | 0.7374 | 0.8128 |
0.0107 | 9.0 | 1446 | 1.1960 | 0.8187 | 0.8170 | 0.8187 | 0.7693 | 0.7368 | 0.0163 | 0.0156 | 0.9743 | 0.9862 | 0.8187 | 0.7368 | 0.8187 | 0.7400 | 0.8157 |
0.0016 | 10.0 | 1607 | 1.2049 | 0.8156 | 0.8150 | 0.8156 | 0.7659 | 0.7353 | 0.0166 | 0.0159 | 0.9741 | 0.9860 | 0.8156 | 0.7353 | 0.8156 | 0.7376 | 0.8131 |
0.0016 | 11.0 | 1768 | 1.2137 | 0.8156 | 0.8147 | 0.8156 | 0.7661 | 0.7353 | 0.0166 | 0.0159 | 0.9741 | 0.9860 | 0.8156 | 0.7353 | 0.8156 | 0.7377 | 0.8130 |
0.0016 | 12.0 | 1929 | 1.2158 | 0.8156 | 0.8145 | 0.8156 | 0.7664 | 0.7353 | 0.0166 | 0.0159 | 0.9739 | 0.9860 | 0.8156 | 0.7353 | 0.8156 | 0.7379 | 0.8129 |
0.0011 | 13.0 | 2089 | 1.2202 | 0.8187 | 0.8169 | 0.8187 | 0.7720 | 0.7372 | 0.0163 | 0.0156 | 0.9741 | 0.9862 | 0.8187 | 0.7372 | 0.8187 | 0.7425 | 0.8158 |
0.0011 | 14.0 | 2250 | 1.2229 | 0.8187 | 0.8169 | 0.8187 | 0.7720 | 0.7372 | 0.0163 | 0.0156 | 0.9741 | 0.9862 | 0.8187 | 0.7372 | 0.8187 | 0.7425 | 0.8158 |
0.0011 | 14.93 | 2400 | 1.2252 | 0.8203 | 0.8184 | 0.8203 | 0.7732 | 0.7380 | 0.0162 | 0.0154 | 0.9743 | 0.9863 | 0.8203 | 0.7380 | 0.8203 | 0.7435 | 0.8173 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.19.0
- Tokenizers 0.15.1