yacht's picture
Upload tokenizer
3f27ca2 verified
metadata
library_name: transformers
language:
  - th
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_17_0
metrics:
  - wer
model-index:
  - name: Whisper Large v3 Thai Finetuned
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Common Voice 17.0
          type: mozilla-foundation/common_voice_17_0
          config: th
          split: None
          args: 'config: th, split: train'
        metrics:
          - type: wer
            value: 37.14119683781068
            name: Wer

Whisper Large v3 Thai Finetuned

This model is a fine-tuned version of openai/whisper-large-v3 on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2345
  • Cer: 10.6496
  • Wer: 37.1412

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 10000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer Wer
0.2027 0.4873 500 0.1805 107.2858 75.0935
0.1674 0.9747 1000 0.1508 8.7078 41.0794
0.1073 1.4620 1500 0.1506 38.7265 45.4534
0.1035 1.9493 2000 0.1372 10.7331 38.5129
0.0587 2.4366 2500 0.1438 16.8383 50.0563
0.0627 2.9240 3000 0.1397 10.6251 31.3447
0.0356 3.4113 3500 0.1497 7.8515 33.7998
0.0367 3.8986 4000 0.1456 18.7090 37.0359
0.0184 4.3860 4500 0.1606 39.3584 93.1345
0.0204 4.8733 5000 0.1596 8.4796 31.7272
0.0112 5.3606 5500 0.1730 4.8027 25.0106
0.0119 5.8480 6000 0.1697 36.5628 82.3949
0.0057 6.3353 6500 0.1800 17.5990 50.1931
0.0052 6.8226 7000 0.1789 48.1183 98.1247
0.003 7.3099 7500 0.1960 15.7676 41.7634
0.0028 7.7973 8000 0.1980 15.2090 54.8407
0.001 8.2846 8500 0.2091 21.4387 68.7365
0.001 8.7719 9000 0.2175 11.7533 40.0988
0.0001 9.2593 9500 0.2327 13.1280 40.6133
0.0001 9.7466 10000 0.2345 10.6496 37.1412

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1