This model is fine-tuned version of microsoft/conditional-detr-resnet-50.
This model was trained using a combination of two datasets: modanet and fashionpedia
The labels are ['bag', 'bottom', 'dress', 'hat', 'shoes', 'outer', 'top']
In the 96th epoch out of total of 100 epochs, the best score was achieved with mAP 0.7542. Therefore, it is believed that there is a little room for performance improvement.
from PIL import Image
import torch
from transformers import AutoImageProcessor, AutoModelForObjectDetection
device = 'cpu'
if torch.cuda.is_available():
device = torch.device('cuda')
elif torch.backends.mps.is_available():
device = torch.device('mps')
ckpt = 'yainage90/fashion-object-detection'
image_processor = AutoImageProcessor.from_pretrained(ckpt)
model = AutoModelForObjectDetection.from_pretrained(ckpt).to(device)
image = Image.open('<path/to/image>').convert('RGB')
with torch.no_grad():
inputs = image_processor(images=[image], return_tensors="pt")
outputs = model(**inputs.to(device))
target_sizes = torch.tensor([[image.size[1], image.size[0]]])
results = image_processor.post_process_object_detection(outputs, threshold=0.4, target_sizes=target_sizes)[0]
items = []
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
score = score.item()
label = label.item()
box = [i.item() for i in box]
print(f"{model.config.id2label[label]}: {round(score, 3)} at {box}")
items.append((score, label, box))
- Downloads last month
- 4,108
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.