This is finetuned version of patrickjohncyh/fashion-clip
with fashion products pattern images dataset.
Dataset link: https://huggingface.co/datasets/yainage90/fashion-pattern-images
from PIL import Image
from transformers import CLIPProcessor, CLIPModel
ckpt = "yainage90/fashion-pattern-clip"
processor = CLIPProcessor.from_pretrained(ckpt)
model = CLIPModel.from_pretrained(ckpt)
image = Image.open("<path/to/image>")
labels = [
"gradient",
"snow_flake",
"camouflage",
"dot",
"zebra",
"leopard",
"lettering",
"snake_skin",
"geometric",
"muji",
"floral",
"zigzag",
"graphic",
"paisley",
"tropical",
"checked",
"houndstooth",
"argyle",
"stripe",
]
inputs = processor(text=labels, images=image, padding=True, return_tensors="pt")
outputs = model(**inputs)
probs = outputs.logits_per_image.softmax(dim=-1).squeeze()
sorted_indices = probs.argsort(dim=-1, descending=True)
for i in sorted_indices.tolist():
pattern = labels[i]
prob = probs[i]
print(f"{pattern}: {prob:.3f}")
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.