File size: 9,576 Bytes
7e50af1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
"""Custom Tokenization classes."""
import collections
import json
import os
import re
from typing import List, Optional, Tuple, Union
from transformers.tokenization_utils import PreTrainedTokenizer
from transformers.utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.json"}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"yairschiff/qm9-tokenizer": "https://huggingface.co/yairschiff/qm9-tokenizer/resolve/main/vocab.json",
}
}
class QM9Tokenizer(PreTrainedTokenizer):
r"""
Construct a tokenizer for QM9 dataset. Based on regex.
This tokenizer inherits from [`PreTrainedTokenizer`]
which contains most of the main methods. Users should
refer to this superclass for more information regarding
those methods.
Adapted from:
https://huggingface.co/ibm/MoLFormer-XL-both-10pct
Args:
vocab_file (`str`):
File containing the vocabulary.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token not in the vocabulary
cannot be converted to an ID and is set to be
this token instead.
sep_token (`str`, *optional*, defaults to `"<eos>"`):
The separator token, which is used when building
a sequence from multiple sequences, e.g., two
sequences for sequence classification or for a
text and a question for question answering.
It is also used as the last token of a sequence
built with special tokens.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example, when
batching sequences of different lengths.
cls_token (`str`, *optional*, defaults to `"<bos>"`):
The classifier token which is used when doing
sequence classification (classification of the
whole sequence
instead of per-token classification). It is the
first token of the sequence when built with
special tokens.
mask_token (`str`, *optional*, defaults to `"<mask>"`):
The token used for masking values. This is the
token used when training this model with masked
language modeling. This is the token, which the
model will try to predict.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file,
unk_token='<unk>',
sep_token='<eos>',
pad_token='<pad>',
cls_token='<bos>',
mask_token='<mask>',
**kwargs,
):
if not os.path.isfile(vocab_file):
raise ValueError(
"Can't find a vocabulary file at path"
f"'{vocab_file}'."
)
with open(vocab_file, encoding="utf-8") as vocab_handle:
vocab_from_file = json.load(vocab_handle)
# Re-index to account for special tokens
self.vocab = {
cls_token: 0,
sep_token: 1,
mask_token: 2,
pad_token: 3,
unk_token: 4,
**{k: v + 5 for k, v in vocab_from_file.items()}
}
self.ids_to_tokens = collections.OrderedDict(
[(ids, tok) for tok, ids in self.vocab.items()])
# Regex pattern taken from:
# https://github.com/pschwllr/MolecularTransformer
self.pattern = (
r"(\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|=|#|-|\+|\\|\/|:|~|@|\?|>|\*|\$|\%[0-9]{2}|[0-9])"
)
self.regex_tokenizer = re.compile(self.pattern)
super().__init__(
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
**kwargs,
)
@property
def vocab_size(self):
return len(self.vocab)
def get_vocab(self):
return dict(self.vocab, **self.added_tokens_encoder)
def _tokenize(self, text, **kwargs):
split_tokens = self.regex_tokenizer.findall(text)
return split_tokens
def _convert_token_to_id(self, token):
"""Converts token (str) in an id using the vocab."""
return self.vocab.get(token, self.vocab.get(self.unk_token))
def _convert_id_to_token(self, index):
"""Converts index (integer) in a token (str) using the vocab."""
return self.ids_to_tokens.get(index, self.unk_token)
def convert_tokens_to_string(self, tokens):
"""Converts sequence of tokens (string) in a single string."""
out_string = "".join(tokens).strip()
return out_string
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.build_inputs_with_special_tokens
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of
sequences for sequence classification tasks by
concatenating and adding special tokens.
A BERT sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will
be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence
pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids)
with the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + token_ids_1 + sep
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.get_special_tokens_mask
def get_special_tokens_mask(
self,
token_ids_0: List[int],
token_ids_1: Optional[List[int]] = None,
already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no
special tokens added. This method is called when
adding special tokens using the tokenizer
`prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether the token list is already formatted
with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range
[0, 1]: 1 for a special token, 0 for a sequence
token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0,
token_ids_1=token_ids_1,
already_has_special_tokens=True
)
if token_ids_1 is not None:
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1]
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.create_token_type_ids_from_sequences
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be
used in a sequence-pair classification task.
A BERT sequence pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
If `token_ids_1` is `None`, this method only returns
the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence
pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
def save_vocabulary(
self, save_directory: str,
filename_prefix: Optional[str] = None
) -> Union[Tuple[str], None]:
if not os.path.isdir(save_directory):
logger.error(
f"Vocabulary path ({save_directory}) should"
"be a directory.")
return None
vocab_file = os.path.join(
save_directory,
(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
with open(vocab_file, "w", encoding="utf-8") as f:
f.write(
json.dumps(
self.vocab,
indent=2,
sort_keys=True,
ensure_ascii=False
) + "\n")
return (vocab_file,)
|