Add library name, pipeline tag, paper link, and Github link

#1
by nielsr HF staff - opened
Files changed (1) hide show
  1. README.md +9 -3
README.md CHANGED
@@ -1,13 +1,19 @@
1
  ---
2
- license: llama3
3
- datasets:
4
- - BAAI/Infinity-Instruct
5
  base_model:
6
  - meta-llama/Meta-Llama-3.1-8B-Instruct
 
 
 
 
 
7
  ---
8
 
9
  We prune the Llama-3.1-8B-Instruct to 1.4B and fine-tune it with LLM-Neo method,which combines LoRA and KD in one. Training data is sampling from BAAI/Infinity-Instruct for 1 Million lines.
10
 
 
 
 
 
11
  ## Benchmarks
12
 
13
  In this section, we report the results for Llama3.1-Neo-1B-100w on standard automatic benchmarks. For all the evaluations, we use [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) library.
 
1
  ---
 
 
 
2
  base_model:
3
  - meta-llama/Meta-Llama-3.1-8B-Instruct
4
+ datasets:
5
+ - BAAI/Infinity-Instruct
6
+ license: apache-2.0
7
+ library_name: transformers
8
+ pipeline_tag: text-generation
9
  ---
10
 
11
  We prune the Llama-3.1-8B-Instruct to 1.4B and fine-tune it with LLM-Neo method,which combines LoRA and KD in one. Training data is sampling from BAAI/Infinity-Instruct for 1 Million lines.
12
 
13
+ For more information, please refer to the paper: [LLM-Neo: Parameter Efficient Knowledge Distillation for Large Language Models](https://huggingface.co/papers/2411.06839)
14
+
15
+ Code can be found here: https://github.com/yang3121099/LLM-Neo
16
+
17
  ## Benchmarks
18
 
19
  In this section, we report the results for Llama3.1-Neo-1B-100w on standard automatic benchmarks. For all the evaluations, we use [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) library.