metadata
base_model: sentence-transformers/all-MiniLM-L6-v2
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: >-
What are the key situations that require the preparation of a mission
order?
- text: >-
How can audio data be used to improve speaker identification using neural
networks?
- text: >-
How can organizations balance the need for data privacy with the benefits
of involving interns in data-related projects?
- text: What is the purpose of the message posted by the CR?
- text: >-
What are the consequences of adopting a 'if not broken, don't fix'
attitude towards data monitoring?
inference: true
model-index:
- name: SetFit with sentence-transformers/all-MiniLM-L6-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.3076923076923077
name: Accuracy
SetFit with sentence-transformers/all-MiniLM-L6-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/all-MiniLM-L6-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/all-MiniLM-L6-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 256 tokens
- Number of Classes: 4 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
very_semantic |
|
lexical |
|
very_lexical |
|
semantic |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.3077 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("yaniseuranova/setfit-rag-hybrid-search-query-router-test")
# Run inference
preds = model("What is the purpose of the message posted by the CR?")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 7 | 14.1913 | 24 |
Label | Training Sample Count |
---|---|
lexical | 41 |
semantic | 24 |
very_lexical | 17 |
very_semantic | 33 |
Training Hyperparameters
- batch_size: (4, 4)
- num_epochs: (2, 2)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0004 | 1 | 0.4883 | - |
0.0209 | 50 | 0.3738 | - |
0.0417 | 100 | 0.2192 | - |
0.0626 | 150 | 0.1503 | - |
0.0834 | 200 | 0.1514 | - |
0.1043 | 250 | 0.1829 | - |
0.1251 | 300 | 0.4191 | - |
0.1460 | 350 | 0.2136 | - |
0.1668 | 400 | 0.1847 | - |
0.1877 | 450 | 0.1681 | - |
0.2085 | 500 | 0.222 | - |
0.2294 | 550 | 0.0397 | - |
0.2502 | 600 | 0.2626 | - |
0.2711 | 650 | 0.1343 | - |
0.2919 | 700 | 0.1769 | - |
0.3128 | 750 | 0.1704 | - |
0.3336 | 800 | 0.401 | - |
0.3545 | 850 | 0.1405 | - |
0.3753 | 900 | 0.1892 | - |
0.3962 | 950 | 0.1444 | - |
0.4170 | 1000 | 0.2337 | - |
0.4379 | 1050 | 0.1848 | - |
0.4587 | 1100 | 0.0601 | - |
0.4796 | 1150 | 0.2467 | - |
0.5004 | 1200 | 0.1829 | - |
0.5213 | 1250 | 0.1695 | - |
0.5421 | 1300 | 0.3892 | - |
0.5630 | 1350 | 0.1408 | - |
0.5838 | 1400 | 0.0506 | - |
0.6047 | 1450 | 0.1835 | - |
0.6255 | 1500 | 0.3284 | - |
0.6464 | 1550 | 0.1797 | - |
0.6672 | 1600 | 0.1118 | - |
0.6881 | 1650 | 0.1502 | - |
0.7089 | 1700 | 0.112 | - |
0.7298 | 1750 | 0.0401 | - |
0.7506 | 1800 | 0.117 | - |
0.7715 | 1850 | 0.1287 | - |
0.7923 | 1900 | 0.0623 | - |
0.8132 | 1950 | 0.2128 | - |
0.8340 | 2000 | 0.1542 | - |
0.8549 | 2050 | 0.1774 | - |
0.8757 | 2100 | 0.3252 | - |
0.8966 | 2150 | 0.0152 | - |
0.9174 | 2200 | 0.0539 | - |
0.9383 | 2250 | 0.0047 | - |
0.9591 | 2300 | 0.1232 | - |
0.9800 | 2350 | 0.3466 | - |
1.0 | 2398 | - | 0.3644 |
1.0008 | 2400 | 0.0296 | - |
1.0217 | 2450 | 0.3459 | - |
1.0425 | 2500 | 0.0867 | - |
1.0634 | 2550 | 0.1343 | - |
1.0842 | 2600 | 0.2074 | - |
1.1051 | 2650 | 0.0052 | - |
1.1259 | 2700 | 0.0548 | - |
1.1468 | 2750 | 0.0441 | - |
1.1676 | 2800 | 0.0821 | - |
1.1885 | 2850 | 0.0546 | - |
1.2093 | 2900 | 0.1286 | - |
1.2302 | 2950 | 0.1222 | - |
1.2510 | 3000 | 0.0227 | - |
1.2719 | 3050 | 0.3011 | - |
1.2927 | 3100 | 0.018 | - |
1.3136 | 3150 | 0.0581 | - |
1.3344 | 3200 | 0.0485 | - |
1.3553 | 3250 | 0.2369 | - |
1.3761 | 3300 | 0.1681 | - |
1.3970 | 3350 | 0.1289 | - |
1.4178 | 3400 | 0.1664 | - |
1.4387 | 3450 | 0.1467 | - |
1.4595 | 3500 | 0.1399 | - |
1.4804 | 3550 | 0.3045 | - |
1.5013 | 3600 | 0.2155 | - |
1.5221 | 3650 | 0.061 | - |
1.5430 | 3700 | 0.0787 | - |
1.5638 | 3750 | 0.3649 | - |
1.5847 | 3800 | 0.1202 | - |
1.6055 | 3850 | 0.1004 | - |
1.6264 | 3900 | 0.154 | - |
1.6472 | 3950 | 0.0944 | - |
1.6681 | 4000 | 0.0004 | - |
1.6889 | 4050 | 0.1843 | - |
1.7098 | 4100 | 0.2233 | - |
1.7306 | 4150 | 0.2203 | - |
1.7515 | 4200 | 0.0986 | - |
1.7723 | 4250 | 0.2295 | - |
1.7932 | 4300 | 0.1763 | - |
1.8140 | 4350 | 0.3487 | - |
1.8349 | 4400 | 0.3285 | - |
1.8557 | 4450 | 0.0152 | - |
1.8766 | 4500 | 0.1108 | - |
1.8974 | 4550 | 0.2416 | - |
1.9183 | 4600 | 0.0476 | - |
1.9391 | 4650 | 0.2929 | - |
1.9600 | 4700 | 0.1006 | - |
1.9808 | 4750 | 0.0925 | - |
2.0 | 4796 | - | 0.3669 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 2.6.1
- Transformers: 4.39.0
- PyTorch: 2.3.1+cu121
- Datasets: 2.18.0
- Tokenizers: 0.15.2
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}