nbbert_ED1
This model is a fine-tuned version of NbAiLab/nb-bert-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4147
- F1-score: 0.8769
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | F1-score |
---|---|---|---|---|
No log | 1.0 | 69 | 0.7063 | 0.3425 |
No log | 2.0 | 138 | 0.6562 | 0.4700 |
No log | 3.0 | 207 | 0.5758 | 0.8114 |
No log | 4.0 | 276 | 0.4802 | 0.8441 |
No log | 5.0 | 345 | 0.4557 | 0.8096 |
No log | 6.0 | 414 | 0.4620 | 0.8597 |
No log | 7.0 | 483 | 0.4147 | 0.8769 |
0.4906 | 8.0 | 552 | 0.5979 | 0.8442 |
0.4906 | 9.0 | 621 | 0.6290 | 0.8432 |
0.4906 | 10.0 | 690 | 0.5401 | 0.8443 |
0.4906 | 11.0 | 759 | 0.5805 | 0.8606 |
0.4906 | 12.0 | 828 | 0.6075 | 0.8688 |
0.4906 | 13.0 | 897 | 0.7802 | 0.8436 |
0.4906 | 14.0 | 966 | 0.7530 | 0.8432 |
0.1795 | 15.0 | 1035 | 0.6979 | 0.8606 |
0.1795 | 16.0 | 1104 | 0.7619 | 0.8524 |
0.1795 | 17.0 | 1173 | 0.7760 | 0.8525 |
0.1795 | 18.0 | 1242 | 0.8060 | 0.8525 |
0.1795 | 19.0 | 1311 | 0.8363 | 0.8525 |
0.1795 | 20.0 | 1380 | 0.8305 | 0.8525 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 126
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for yemen2016/nbbert_ED2
Base model
NbAiLab/nb-bert-base