Upload folder using huggingface_hub
#3
by
yentinglin
- opened
- config.json +3 -3
- latest +1 -0
- model-00001-of-00030.safetensors +2 -2
- model-00002-of-00030.safetensors +1 -1
- model-00003-of-00030.safetensors +1 -1
- model-00004-of-00030.safetensors +1 -1
- model-00005-of-00030.safetensors +1 -1
- model-00006-of-00030.safetensors +1 -1
- model-00007-of-00030.safetensors +1 -1
- model-00008-of-00030.safetensors +1 -1
- model-00009-of-00030.safetensors +1 -1
- model-00010-of-00030.safetensors +1 -1
- model-00011-of-00030.safetensors +1 -1
- model-00012-of-00030.safetensors +1 -1
- model-00013-of-00030.safetensors +1 -1
- model-00014-of-00030.safetensors +1 -1
- model-00015-of-00030.safetensors +1 -1
- model-00016-of-00030.safetensors +1 -1
- model-00017-of-00030.safetensors +1 -1
- model-00018-of-00030.safetensors +1 -1
- model-00019-of-00030.safetensors +1 -1
- model-00020-of-00030.safetensors +1 -1
- model-00021-of-00030.safetensors +1 -1
- model-00022-of-00030.safetensors +1 -1
- model-00023-of-00030.safetensors +1 -1
- model-00024-of-00030.safetensors +1 -1
- model-00025-of-00030.safetensors +1 -1
- model-00026-of-00030.safetensors +1 -1
- model-00027-of-00030.safetensors +1 -1
- model-00028-of-00030.safetensors +1 -1
- model-00029-of-00030.safetensors +1 -1
- model-00030-of-00030.safetensors +2 -2
- model.safetensors.index.json +1 -1
- special_tokens_map.json +2 -2
- tokenizer.json +18 -0
- tokenizer_config.json +18 -2
- trainer_state.json +1141 -0
- training_args.bin +3 -0
- zero_to_fp32.py +592 -0
config.json
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "yentinglin/Llama-3-Taiwan-70B-Instruct
|
3 |
"architectures": [
|
4 |
"LlamaForCausalLM"
|
5 |
],
|
6 |
"attention_bias": false,
|
7 |
"attention_dropout": 0.0,
|
8 |
"bos_token_id": 128000,
|
9 |
-
"eos_token_id":
|
10 |
"hidden_act": "silu",
|
11 |
"hidden_size": 8192,
|
12 |
"initializer_range": 0.02,
|
@@ -24,5 +24,5 @@
|
|
24 |
"torch_dtype": "bfloat16",
|
25 |
"transformers_version": "4.40.2",
|
26 |
"use_cache": false,
|
27 |
-
"vocab_size":
|
28 |
}
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "yentinglin/Llama-3-Taiwan-70B-Instruct",
|
3 |
"architectures": [
|
4 |
"LlamaForCausalLM"
|
5 |
],
|
6 |
"attention_bias": false,
|
7 |
"attention_dropout": 0.0,
|
8 |
"bos_token_id": 128000,
|
9 |
+
"eos_token_id": 128256,
|
10 |
"hidden_act": "silu",
|
11 |
"hidden_size": 8192,
|
12 |
"initializer_range": 0.02,
|
|
|
24 |
"torch_dtype": "bfloat16",
|
25 |
"transformers_version": "4.40.2",
|
26 |
"use_cache": false,
|
27 |
+
"vocab_size": 128258
|
28 |
}
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step160
|
model-00001-of-00030.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3456c422f211ac69b2a0846a5bdf723b2d3776f16defc6a814ef9d2087685199
|
3 |
+
size 4584441576
|
model-00002-of-00030.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4664167376
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c827cb32ca8351713bd296bf0ddbeb994df2d604fbf662391be1d6407d63cc5f
|
3 |
size 4664167376
|
model-00003-of-00030.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4999711704
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1519c49a9afd51bc61f0f522986a9fb551a062097206b8b61147903e7c6c6496
|
3 |
size 4999711704
|
model-00004-of-00030.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4966157032
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:97c0cdafd98d33a5308402961f181dee3fe7ed6204a2558440395b5a411d19bd
|
3 |
size 4966157032
|
model-00005-of-00030.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4664134408
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3e879a6c47b37235fd975da6f9896976760d21ecf28ad70f771f9faf71713e3e
|
3 |
size 4664134408
|
model-00006-of-00030.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4664167408
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4cc1b1e8b14a38c2f21085a0f55caf0f65d612227d6c169efa7735e9f81357f6
|
3 |
size 4664167408
|
model-00007-of-00030.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4664167408
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b0d47426adceabc7a4ebcfe5bc24b5830fc4af5c748d64e56f0cdd240ea6cbac
|
3 |
size 4664167408
|
model-00008-of-00030.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4999711728
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6ca3891ceaf01cd52f7d79ea8694378d5d0c53131cf0359e107ff0f03b45eeaa
|
3 |
size 4999711728
|
model-00009-of-00030.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4966157056
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c06eaa3666a65b4c64831ec4233270d56966e898f600cdba6cba07af0e8a559c
|
3 |
size 4966157056
|
model-00010-of-00030.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4664134408
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c272793f8a90198705124b3bca6e36e605df5bd55c8fe6fa6ab21115d76e0ab1
|
3 |
size 4664134408
|
model-00011-of-00030.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4664167408
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fde6dcdcc375f2f80e6edb57fc3c03493522b4d274209712ca2e1c1ff68eb868
|
3 |
size 4664167408
|
model-00012-of-00030.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4664167408
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7c31ffd3a2aa84fd522be76c3b71a756bcc05993d5336f8123cebe04248cd9b0
|
3 |
size 4664167408
|
model-00013-of-00030.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4999711728
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b3c790db09692101d47da5261b8b9f363b5d94640a355a2e68ea6b8c1cc6ee80
|
3 |
size 4999711728
|
model-00014-of-00030.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4966157056
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7f62731dc23f1a8f8024aed62228ff5f2733b54e85584b500c459d4ed2b919fd
|
3 |
size 4966157056
|
model-00015-of-00030.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4664134408
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:74b88be19757ab65ac11fe088852cf153d6299b1ee4ac8a04e8b94932b2ec6b8
|
3 |
size 4664134408
|
model-00016-of-00030.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4664167408
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4a39fa49652b72921656f86a2bbb3774d46d4e3769d46d102942cb47687d0a63
|
3 |
size 4664167408
|
model-00017-of-00030.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4664167408
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b53a2743088a1f168096db90806c903fa29bf0fb54bf348b6cd098c1842d0f0b
|
3 |
size 4664167408
|
model-00018-of-00030.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4999711728
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:70fef9f2a3914cdd3f685e0a6e04f83e9aeea249f65008d6750088c34ec25167
|
3 |
size 4999711728
|
model-00019-of-00030.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4966157056
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6f4610d20ada34f28002de4eaa8e3785b77d3df37e1cb612144e9bf9af8fe141
|
3 |
size 4966157056
|
model-00020-of-00030.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4664134408
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:32b21b7f898f17d54d4796ab37c97bb09dd4bcea2d427ce6a3609fb70a331786
|
3 |
size 4664134408
|
model-00021-of-00030.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4664167408
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b527974170cc2d8a21595dd33d3c38292eb261b6630283539aae5b62c6b2498a
|
3 |
size 4664167408
|
model-00022-of-00030.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4664167408
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a59c96d221558078d5c4540e727e843500711df3e6ba33acb7d9067807907056
|
3 |
size 4664167408
|
model-00023-of-00030.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4999711728
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0f1e1ac772c05ccfad15bd3788ccb68cfbcc500026caed1593ca81ca5fcc12b5
|
3 |
size 4999711728
|
model-00024-of-00030.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4966157056
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4dd2c2517501e87be7b5cc77f9e00a3e5bd2e5482a5f86890b97dbf8f7a58999
|
3 |
size 4966157056
|
model-00025-of-00030.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4664134408
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dc25480728d569497f3a8acaf6d9e1124fa215058a07d346a8794c74f3ec61ce
|
3 |
size 4664134408
|
model-00026-of-00030.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4664167408
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4cf05dacab18c581ce789a0d55da092e3c655067adb330a1cb99699140d71aa1
|
3 |
size 4664167408
|
model-00027-of-00030.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4664167408
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f055d1be72dd2da7ac8714b05a2a071578f68a219c48e15fcfc499e5708a76c
|
3 |
size 4664167408
|
model-00028-of-00030.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4999711728
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1d4ddfa6156f632d291255b7f687cc9f82be9bd62f6216d9ca6b8d15e6da4d14
|
3 |
size 4999711728
|
model-00029-of-00030.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4966173536
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:558dcd4052a8f80a09e6a201385783f73ffbb413b612c5f57177ee2489172abd
|
3 |
size 4966173536
|
model-00030-of-00030.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fe325f3f5568f99a0bbf54bba1b1a7eada4262fa0ea2fe0b40f916bd4f5e24b1
|
3 |
+
size 2101379200
|
model.safetensors.index.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"metadata": {
|
3 |
-
"total_size":
|
4 |
},
|
5 |
"weight_map": {
|
6 |
"lm_head.weight": "model-00030-of-00030.safetensors",
|
|
|
1 |
{
|
2 |
"metadata": {
|
3 |
+
"total_size": 141107478528
|
4 |
},
|
5 |
"weight_map": {
|
6 |
"lm_head.weight": "model-00030-of-00030.safetensors",
|
special_tokens_map.json
CHANGED
@@ -7,14 +7,14 @@
|
|
7 |
"single_word": false
|
8 |
},
|
9 |
"eos_token": {
|
10 |
-
"content": "<|
|
11 |
"lstrip": false,
|
12 |
"normalized": false,
|
13 |
"rstrip": false,
|
14 |
"single_word": false
|
15 |
},
|
16 |
"pad_token": {
|
17 |
-
"content": "<|
|
18 |
"lstrip": false,
|
19 |
"normalized": false,
|
20 |
"rstrip": false,
|
|
|
7 |
"single_word": false
|
8 |
},
|
9 |
"eos_token": {
|
10 |
+
"content": "<|im_end|>",
|
11 |
"lstrip": false,
|
12 |
"normalized": false,
|
13 |
"rstrip": false,
|
14 |
"single_word": false
|
15 |
},
|
16 |
"pad_token": {
|
17 |
+
"content": "<|endoftext|>",
|
18 |
"lstrip": false,
|
19 |
"normalized": false,
|
20 |
"rstrip": false,
|
tokenizer.json
CHANGED
@@ -2306,6 +2306,24 @@
|
|
2306 |
"rstrip": false,
|
2307 |
"normalized": false,
|
2308 |
"special": true
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2309 |
}
|
2310 |
],
|
2311 |
"normalizer": null,
|
|
|
2306 |
"rstrip": false,
|
2307 |
"normalized": false,
|
2308 |
"special": true
|
2309 |
+
},
|
2310 |
+
{
|
2311 |
+
"id": 128256,
|
2312 |
+
"content": "<|im_end|>",
|
2313 |
+
"single_word": false,
|
2314 |
+
"lstrip": false,
|
2315 |
+
"rstrip": false,
|
2316 |
+
"normalized": false,
|
2317 |
+
"special": true
|
2318 |
+
},
|
2319 |
+
{
|
2320 |
+
"id": 128257,
|
2321 |
+
"content": "<|endoftext|>",
|
2322 |
+
"single_word": false,
|
2323 |
+
"lstrip": false,
|
2324 |
+
"rstrip": false,
|
2325 |
+
"normalized": false,
|
2326 |
+
"special": true
|
2327 |
}
|
2328 |
],
|
2329 |
"normalizer": null,
|
tokenizer_config.json
CHANGED
@@ -2047,17 +2047,33 @@
|
|
2047 |
"rstrip": false,
|
2048 |
"single_word": false,
|
2049 |
"special": true
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2050 |
}
|
2051 |
},
|
2052 |
"bos_token": "<|begin_of_text|>",
|
2053 |
"chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% else %}{{ eos_token }}{% endif %}",
|
2054 |
"clean_up_tokenization_spaces": true,
|
2055 |
-
"eos_token": "<|
|
2056 |
"model_input_names": [
|
2057 |
"input_ids",
|
2058 |
"attention_mask"
|
2059 |
],
|
2060 |
"model_max_length": 1000000000000000019884624838656,
|
2061 |
-
"pad_token": "<|
|
2062 |
"tokenizer_class": "PreTrainedTokenizerFast"
|
2063 |
}
|
|
|
2047 |
"rstrip": false,
|
2048 |
"single_word": false,
|
2049 |
"special": true
|
2050 |
+
},
|
2051 |
+
"128256": {
|
2052 |
+
"content": "<|im_end|>",
|
2053 |
+
"lstrip": false,
|
2054 |
+
"normalized": false,
|
2055 |
+
"rstrip": false,
|
2056 |
+
"single_word": false,
|
2057 |
+
"special": true
|
2058 |
+
},
|
2059 |
+
"128257": {
|
2060 |
+
"content": "<|endoftext|>",
|
2061 |
+
"lstrip": false,
|
2062 |
+
"normalized": false,
|
2063 |
+
"rstrip": false,
|
2064 |
+
"single_word": false,
|
2065 |
+
"special": true
|
2066 |
}
|
2067 |
},
|
2068 |
"bos_token": "<|begin_of_text|>",
|
2069 |
"chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% else %}{{ eos_token }}{% endif %}",
|
2070 |
"clean_up_tokenization_spaces": true,
|
2071 |
+
"eos_token": "<|im_end|>",
|
2072 |
"model_input_names": [
|
2073 |
"input_ids",
|
2074 |
"attention_mask"
|
2075 |
],
|
2076 |
"model_max_length": 1000000000000000019884624838656,
|
2077 |
+
"pad_token": "<|endoftext|>",
|
2078 |
"tokenizer_class": "PreTrainedTokenizerFast"
|
2079 |
}
|
trainer_state.json
ADDED
@@ -0,0 +1,1141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.001564945226917,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 160,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.006259780907668232,
|
13 |
+
"grad_norm": 1.98288817639941,
|
14 |
+
"learning_rate": 5.000000000000001e-07,
|
15 |
+
"loss": 0.6599,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.012519561815336464,
|
20 |
+
"grad_norm": 2.008513351833145,
|
21 |
+
"learning_rate": 1.0000000000000002e-06,
|
22 |
+
"loss": 0.6744,
|
23 |
+
"step": 2
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.018779342723004695,
|
27 |
+
"grad_norm": 2.03144664277006,
|
28 |
+
"learning_rate": 1.5e-06,
|
29 |
+
"loss": 0.6721,
|
30 |
+
"step": 3
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.025039123630672927,
|
34 |
+
"grad_norm": 1.9480725202469245,
|
35 |
+
"learning_rate": 2.0000000000000003e-06,
|
36 |
+
"loss": 0.6577,
|
37 |
+
"step": 4
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.03129890453834116,
|
41 |
+
"grad_norm": 1.8678118004054254,
|
42 |
+
"learning_rate": 2.5e-06,
|
43 |
+
"loss": 0.6484,
|
44 |
+
"step": 5
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.03755868544600939,
|
48 |
+
"grad_norm": 1.6583787538868422,
|
49 |
+
"learning_rate": 3e-06,
|
50 |
+
"loss": 0.6174,
|
51 |
+
"step": 6
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.04381846635367762,
|
55 |
+
"grad_norm": 1.5614405714896737,
|
56 |
+
"learning_rate": 3.5000000000000004e-06,
|
57 |
+
"loss": 0.5896,
|
58 |
+
"step": 7
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.050078247261345854,
|
62 |
+
"grad_norm": 0.5773143053283745,
|
63 |
+
"learning_rate": 4.000000000000001e-06,
|
64 |
+
"loss": 0.5557,
|
65 |
+
"step": 8
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.056338028169014086,
|
69 |
+
"grad_norm": 0.3043811484340276,
|
70 |
+
"learning_rate": 4.5e-06,
|
71 |
+
"loss": 0.541,
|
72 |
+
"step": 9
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.06259780907668232,
|
76 |
+
"grad_norm": 0.8131531353366078,
|
77 |
+
"learning_rate": 5e-06,
|
78 |
+
"loss": 0.5595,
|
79 |
+
"step": 10
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.06885758998435054,
|
83 |
+
"grad_norm": 0.424180567084822,
|
84 |
+
"learning_rate": 5.500000000000001e-06,
|
85 |
+
"loss": 0.5427,
|
86 |
+
"step": 11
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.07511737089201878,
|
90 |
+
"grad_norm": 0.2913041969769501,
|
91 |
+
"learning_rate": 6e-06,
|
92 |
+
"loss": 0.5274,
|
93 |
+
"step": 12
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.081377151799687,
|
97 |
+
"grad_norm": 0.34524917385772347,
|
98 |
+
"learning_rate": 6.5000000000000004e-06,
|
99 |
+
"loss": 0.5337,
|
100 |
+
"step": 13
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.08763693270735524,
|
104 |
+
"grad_norm": 0.36469195568794854,
|
105 |
+
"learning_rate": 7.000000000000001e-06,
|
106 |
+
"loss": 0.5279,
|
107 |
+
"step": 14
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.09389671361502347,
|
111 |
+
"grad_norm": 0.35209082489157323,
|
112 |
+
"learning_rate": 7.5e-06,
|
113 |
+
"loss": 0.5296,
|
114 |
+
"step": 15
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.10015649452269171,
|
118 |
+
"grad_norm": 0.28086156745404856,
|
119 |
+
"learning_rate": 8.000000000000001e-06,
|
120 |
+
"loss": 0.5319,
|
121 |
+
"step": 16
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.10641627543035993,
|
125 |
+
"grad_norm": 0.5457849868763605,
|
126 |
+
"learning_rate": 8.500000000000002e-06,
|
127 |
+
"loss": 0.5199,
|
128 |
+
"step": 17
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.11267605633802817,
|
132 |
+
"grad_norm": 0.264594169690208,
|
133 |
+
"learning_rate": 9e-06,
|
134 |
+
"loss": 0.5234,
|
135 |
+
"step": 18
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.1189358372456964,
|
139 |
+
"grad_norm": 0.2472097021778676,
|
140 |
+
"learning_rate": 9.5e-06,
|
141 |
+
"loss": 0.5248,
|
142 |
+
"step": 19
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.12519561815336464,
|
146 |
+
"grad_norm": 0.2560549908847749,
|
147 |
+
"learning_rate": 1e-05,
|
148 |
+
"loss": 0.5159,
|
149 |
+
"step": 20
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.13145539906103287,
|
153 |
+
"grad_norm": 0.4101523009554862,
|
154 |
+
"learning_rate": 1.05e-05,
|
155 |
+
"loss": 0.5058,
|
156 |
+
"step": 21
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.13771517996870108,
|
160 |
+
"grad_norm": 0.22290433425318873,
|
161 |
+
"learning_rate": 1.1000000000000001e-05,
|
162 |
+
"loss": 0.5099,
|
163 |
+
"step": 22
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.14397496087636932,
|
167 |
+
"grad_norm": 0.2600145857043661,
|
168 |
+
"learning_rate": 1.1500000000000002e-05,
|
169 |
+
"loss": 0.5076,
|
170 |
+
"step": 23
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.15023474178403756,
|
174 |
+
"grad_norm": 1.1584269063197106,
|
175 |
+
"learning_rate": 1.2e-05,
|
176 |
+
"loss": 0.5133,
|
177 |
+
"step": 24
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.1564945226917058,
|
181 |
+
"grad_norm": 0.21303015786105067,
|
182 |
+
"learning_rate": 1.25e-05,
|
183 |
+
"loss": 0.5009,
|
184 |
+
"step": 25
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.162754303599374,
|
188 |
+
"grad_norm": 2.5709430754104345,
|
189 |
+
"learning_rate": 1.3000000000000001e-05,
|
190 |
+
"loss": 0.5067,
|
191 |
+
"step": 26
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.16901408450704225,
|
195 |
+
"grad_norm": 0.42260631876680255,
|
196 |
+
"learning_rate": 1.3500000000000001e-05,
|
197 |
+
"loss": 0.4951,
|
198 |
+
"step": 27
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.1752738654147105,
|
202 |
+
"grad_norm": 0.2122989372030049,
|
203 |
+
"learning_rate": 1.4000000000000001e-05,
|
204 |
+
"loss": 0.4968,
|
205 |
+
"step": 28
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.18153364632237873,
|
209 |
+
"grad_norm": 0.36382001881720555,
|
210 |
+
"learning_rate": 1.45e-05,
|
211 |
+
"loss": 0.5035,
|
212 |
+
"step": 29
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.18779342723004694,
|
216 |
+
"grad_norm": 0.22094603076455596,
|
217 |
+
"learning_rate": 1.5e-05,
|
218 |
+
"loss": 0.5049,
|
219 |
+
"step": 30
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.19405320813771518,
|
223 |
+
"grad_norm": 0.17188920546056902,
|
224 |
+
"learning_rate": 1.55e-05,
|
225 |
+
"loss": 0.4979,
|
226 |
+
"step": 31
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.20031298904538342,
|
230 |
+
"grad_norm": 0.18515458685485783,
|
231 |
+
"learning_rate": 1.6000000000000003e-05,
|
232 |
+
"loss": 0.4916,
|
233 |
+
"step": 32
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.20657276995305165,
|
237 |
+
"grad_norm": 0.783356101762532,
|
238 |
+
"learning_rate": 1.65e-05,
|
239 |
+
"loss": 0.4929,
|
240 |
+
"step": 33
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.21283255086071987,
|
244 |
+
"grad_norm": 0.19059224326067628,
|
245 |
+
"learning_rate": 1.7000000000000003e-05,
|
246 |
+
"loss": 0.4945,
|
247 |
+
"step": 34
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.2190923317683881,
|
251 |
+
"grad_norm": 0.2275442577977743,
|
252 |
+
"learning_rate": 1.75e-05,
|
253 |
+
"loss": 0.4936,
|
254 |
+
"step": 35
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.22535211267605634,
|
258 |
+
"grad_norm": 0.24798149507141237,
|
259 |
+
"learning_rate": 1.8e-05,
|
260 |
+
"loss": 0.4898,
|
261 |
+
"step": 36
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.23161189358372458,
|
265 |
+
"grad_norm": 0.20682357544778035,
|
266 |
+
"learning_rate": 1.85e-05,
|
267 |
+
"loss": 0.4888,
|
268 |
+
"step": 37
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.2378716744913928,
|
272 |
+
"grad_norm": 0.19518819682961547,
|
273 |
+
"learning_rate": 1.9e-05,
|
274 |
+
"loss": 0.4899,
|
275 |
+
"step": 38
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.24413145539906103,
|
279 |
+
"grad_norm": 0.18423871547579748,
|
280 |
+
"learning_rate": 1.9500000000000003e-05,
|
281 |
+
"loss": 0.4868,
|
282 |
+
"step": 39
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.25039123630672927,
|
286 |
+
"grad_norm": 0.1714820355275791,
|
287 |
+
"learning_rate": 2e-05,
|
288 |
+
"loss": 0.4795,
|
289 |
+
"step": 40
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.2566510172143975,
|
293 |
+
"grad_norm": 0.19187618384155788,
|
294 |
+
"learning_rate": 2.05e-05,
|
295 |
+
"loss": 0.4821,
|
296 |
+
"step": 41
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.26291079812206575,
|
300 |
+
"grad_norm": 0.1422378326228944,
|
301 |
+
"learning_rate": 2.1e-05,
|
302 |
+
"loss": 0.4829,
|
303 |
+
"step": 42
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.26917057902973396,
|
307 |
+
"grad_norm": 0.14724977757162294,
|
308 |
+
"learning_rate": 2.15e-05,
|
309 |
+
"loss": 0.4811,
|
310 |
+
"step": 43
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.27543035993740217,
|
314 |
+
"grad_norm": 0.16077227738580077,
|
315 |
+
"learning_rate": 2.2000000000000003e-05,
|
316 |
+
"loss": 0.477,
|
317 |
+
"step": 44
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.28169014084507044,
|
321 |
+
"grad_norm": 0.15993679259901028,
|
322 |
+
"learning_rate": 2.25e-05,
|
323 |
+
"loss": 0.4789,
|
324 |
+
"step": 45
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.28794992175273865,
|
328 |
+
"grad_norm": 0.14385134377084383,
|
329 |
+
"learning_rate": 2.3000000000000003e-05,
|
330 |
+
"loss": 0.4641,
|
331 |
+
"step": 46
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.2942097026604069,
|
335 |
+
"grad_norm": 0.14244559356804792,
|
336 |
+
"learning_rate": 2.35e-05,
|
337 |
+
"loss": 0.4767,
|
338 |
+
"step": 47
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.3004694835680751,
|
342 |
+
"grad_norm": 0.1481660114240819,
|
343 |
+
"learning_rate": 2.4e-05,
|
344 |
+
"loss": 0.4759,
|
345 |
+
"step": 48
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.30672926447574334,
|
349 |
+
"grad_norm": 0.14195363156015162,
|
350 |
+
"learning_rate": 2.45e-05,
|
351 |
+
"loss": 0.471,
|
352 |
+
"step": 49
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.3129890453834116,
|
356 |
+
"grad_norm": 0.15220552720898642,
|
357 |
+
"learning_rate": 2.5e-05,
|
358 |
+
"loss": 0.4715,
|
359 |
+
"step": 50
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.3192488262910798,
|
363 |
+
"grad_norm": 0.13409784658365015,
|
364 |
+
"learning_rate": 2.5500000000000003e-05,
|
365 |
+
"loss": 0.4692,
|
366 |
+
"step": 51
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.325508607198748,
|
370 |
+
"grad_norm": 0.13766694658848178,
|
371 |
+
"learning_rate": 2.6000000000000002e-05,
|
372 |
+
"loss": 0.47,
|
373 |
+
"step": 52
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.3317683881064163,
|
377 |
+
"grad_norm": 0.13097864679643595,
|
378 |
+
"learning_rate": 2.6500000000000004e-05,
|
379 |
+
"loss": 0.4651,
|
380 |
+
"step": 53
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.3380281690140845,
|
384 |
+
"grad_norm": 0.13207003285729219,
|
385 |
+
"learning_rate": 2.7000000000000002e-05,
|
386 |
+
"loss": 0.4714,
|
387 |
+
"step": 54
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.3442879499217527,
|
391 |
+
"grad_norm": 0.14128427173382038,
|
392 |
+
"learning_rate": 2.7500000000000004e-05,
|
393 |
+
"loss": 0.4719,
|
394 |
+
"step": 55
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.350547730829421,
|
398 |
+
"grad_norm": 0.13599048333974484,
|
399 |
+
"learning_rate": 2.8000000000000003e-05,
|
400 |
+
"loss": 0.4657,
|
401 |
+
"step": 56
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.3568075117370892,
|
405 |
+
"grad_norm": 0.1547358977814178,
|
406 |
+
"learning_rate": 2.8499999999999998e-05,
|
407 |
+
"loss": 0.4599,
|
408 |
+
"step": 57
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.36306729264475746,
|
412 |
+
"grad_norm": 0.1357320992255676,
|
413 |
+
"learning_rate": 2.9e-05,
|
414 |
+
"loss": 0.4615,
|
415 |
+
"step": 58
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.36932707355242567,
|
419 |
+
"grad_norm": 0.14465717873045295,
|
420 |
+
"learning_rate": 2.95e-05,
|
421 |
+
"loss": 0.4738,
|
422 |
+
"step": 59
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.3755868544600939,
|
426 |
+
"grad_norm": 0.5900603203611421,
|
427 |
+
"learning_rate": 3e-05,
|
428 |
+
"loss": 0.4702,
|
429 |
+
"step": 60
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.38184663536776214,
|
433 |
+
"grad_norm": 0.17729474902277623,
|
434 |
+
"learning_rate": 3.05e-05,
|
435 |
+
"loss": 0.4592,
|
436 |
+
"step": 61
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.38810641627543035,
|
440 |
+
"grad_norm": 0.22055664690525556,
|
441 |
+
"learning_rate": 3.1e-05,
|
442 |
+
"loss": 0.47,
|
443 |
+
"step": 62
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.39436619718309857,
|
447 |
+
"grad_norm": 0.22917133262033845,
|
448 |
+
"learning_rate": 3.15e-05,
|
449 |
+
"loss": 0.4668,
|
450 |
+
"step": 63
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.40062597809076683,
|
454 |
+
"grad_norm": 0.23278911760289017,
|
455 |
+
"learning_rate": 3.2000000000000005e-05,
|
456 |
+
"loss": 0.4691,
|
457 |
+
"step": 64
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.40688575899843504,
|
461 |
+
"grad_norm": 0.23911939507472177,
|
462 |
+
"learning_rate": 3.2500000000000004e-05,
|
463 |
+
"loss": 0.4662,
|
464 |
+
"step": 65
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.4131455399061033,
|
468 |
+
"grad_norm": 0.19447041878105836,
|
469 |
+
"learning_rate": 3.3e-05,
|
470 |
+
"loss": 0.4633,
|
471 |
+
"step": 66
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.4194053208137715,
|
475 |
+
"grad_norm": 0.17498726962496755,
|
476 |
+
"learning_rate": 3.35e-05,
|
477 |
+
"loss": 0.4654,
|
478 |
+
"step": 67
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.42566510172143973,
|
482 |
+
"grad_norm": 0.24918375228266929,
|
483 |
+
"learning_rate": 3.4000000000000007e-05,
|
484 |
+
"loss": 0.477,
|
485 |
+
"step": 68
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.431924882629108,
|
489 |
+
"grad_norm": 0.2850664865678729,
|
490 |
+
"learning_rate": 3.45e-05,
|
491 |
+
"loss": 0.4648,
|
492 |
+
"step": 69
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.4381846635367762,
|
496 |
+
"grad_norm": 0.27562629972396513,
|
497 |
+
"learning_rate": 3.5e-05,
|
498 |
+
"loss": 0.4667,
|
499 |
+
"step": 70
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.4444444444444444,
|
503 |
+
"grad_norm": 0.22637202856522412,
|
504 |
+
"learning_rate": 3.55e-05,
|
505 |
+
"loss": 0.4653,
|
506 |
+
"step": 71
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.4507042253521127,
|
510 |
+
"grad_norm": 0.2295442026728235,
|
511 |
+
"learning_rate": 3.6e-05,
|
512 |
+
"loss": 0.4622,
|
513 |
+
"step": 72
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.4569640062597809,
|
517 |
+
"grad_norm": 0.26572612655057165,
|
518 |
+
"learning_rate": 3.65e-05,
|
519 |
+
"loss": 0.4673,
|
520 |
+
"step": 73
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.46322378716744916,
|
524 |
+
"grad_norm": 0.2496817546620412,
|
525 |
+
"learning_rate": 3.7e-05,
|
526 |
+
"loss": 0.4611,
|
527 |
+
"step": 74
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.4694835680751174,
|
531 |
+
"grad_norm": 0.21430723659191686,
|
532 |
+
"learning_rate": 3.7500000000000003e-05,
|
533 |
+
"loss": 0.4637,
|
534 |
+
"step": 75
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 0.4757433489827856,
|
538 |
+
"grad_norm": 0.1799606207168491,
|
539 |
+
"learning_rate": 3.8e-05,
|
540 |
+
"loss": 0.4612,
|
541 |
+
"step": 76
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 0.48200312989045385,
|
545 |
+
"grad_norm": 0.2329269891744439,
|
546 |
+
"learning_rate": 3.85e-05,
|
547 |
+
"loss": 0.4569,
|
548 |
+
"step": 77
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.48826291079812206,
|
552 |
+
"grad_norm": 0.2859704851548014,
|
553 |
+
"learning_rate": 3.9000000000000006e-05,
|
554 |
+
"loss": 0.4677,
|
555 |
+
"step": 78
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.4945226917057903,
|
559 |
+
"grad_norm": 0.3153100598444141,
|
560 |
+
"learning_rate": 3.9500000000000005e-05,
|
561 |
+
"loss": 0.465,
|
562 |
+
"step": 79
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 0.5007824726134585,
|
566 |
+
"grad_norm": 0.3165950932566608,
|
567 |
+
"learning_rate": 4e-05,
|
568 |
+
"loss": 0.4755,
|
569 |
+
"step": 80
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.5070422535211268,
|
573 |
+
"grad_norm": 0.3018577292754275,
|
574 |
+
"learning_rate": 4.05e-05,
|
575 |
+
"loss": 0.464,
|
576 |
+
"step": 81
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 0.513302034428795,
|
580 |
+
"grad_norm": 0.39363558044861696,
|
581 |
+
"learning_rate": 4.1e-05,
|
582 |
+
"loss": 0.4701,
|
583 |
+
"step": 82
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 0.5195618153364632,
|
587 |
+
"grad_norm": 0.44171413078007776,
|
588 |
+
"learning_rate": 4.15e-05,
|
589 |
+
"loss": 0.4697,
|
590 |
+
"step": 83
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.5258215962441315,
|
594 |
+
"grad_norm": 0.4086449510625894,
|
595 |
+
"learning_rate": 4.2e-05,
|
596 |
+
"loss": 0.4611,
|
597 |
+
"step": 84
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.5320813771517997,
|
601 |
+
"grad_norm": 0.3156689305434587,
|
602 |
+
"learning_rate": 4.25e-05,
|
603 |
+
"loss": 0.4633,
|
604 |
+
"step": 85
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 0.5383411580594679,
|
608 |
+
"grad_norm": 0.37582415992669976,
|
609 |
+
"learning_rate": 4.3e-05,
|
610 |
+
"loss": 0.4689,
|
611 |
+
"step": 86
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 0.5446009389671361,
|
615 |
+
"grad_norm": 0.3751728997948819,
|
616 |
+
"learning_rate": 4.35e-05,
|
617 |
+
"loss": 0.4658,
|
618 |
+
"step": 87
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 0.5508607198748043,
|
622 |
+
"grad_norm": 0.2622604607003995,
|
623 |
+
"learning_rate": 4.4000000000000006e-05,
|
624 |
+
"loss": 0.4641,
|
625 |
+
"step": 88
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 0.5571205007824727,
|
629 |
+
"grad_norm": 0.27806769516567914,
|
630 |
+
"learning_rate": 4.4500000000000004e-05,
|
631 |
+
"loss": 0.4689,
|
632 |
+
"step": 89
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.5633802816901409,
|
636 |
+
"grad_norm": 0.37193892514568727,
|
637 |
+
"learning_rate": 4.5e-05,
|
638 |
+
"loss": 0.4645,
|
639 |
+
"step": 90
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.5696400625978091,
|
643 |
+
"grad_norm": 0.319234610988282,
|
644 |
+
"learning_rate": 4.55e-05,
|
645 |
+
"loss": 0.4697,
|
646 |
+
"step": 91
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 0.5758998435054773,
|
650 |
+
"grad_norm": 0.24391835650924631,
|
651 |
+
"learning_rate": 4.600000000000001e-05,
|
652 |
+
"loss": 0.4605,
|
653 |
+
"step": 92
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 0.5821596244131455,
|
657 |
+
"grad_norm": 0.3860119064167233,
|
658 |
+
"learning_rate": 4.6500000000000005e-05,
|
659 |
+
"loss": 0.4721,
|
660 |
+
"step": 93
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 0.5884194053208138,
|
664 |
+
"grad_norm": 0.43978262147491526,
|
665 |
+
"learning_rate": 4.7e-05,
|
666 |
+
"loss": 0.4692,
|
667 |
+
"step": 94
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 0.594679186228482,
|
671 |
+
"grad_norm": 0.2869109051387356,
|
672 |
+
"learning_rate": 4.75e-05,
|
673 |
+
"loss": 0.4644,
|
674 |
+
"step": 95
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.6009389671361502,
|
678 |
+
"grad_norm": 0.33046074741721215,
|
679 |
+
"learning_rate": 4.8e-05,
|
680 |
+
"loss": 0.4711,
|
681 |
+
"step": 96
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.6071987480438185,
|
685 |
+
"grad_norm": 0.3874189152162858,
|
686 |
+
"learning_rate": 4.85e-05,
|
687 |
+
"loss": 0.4694,
|
688 |
+
"step": 97
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 0.6134585289514867,
|
692 |
+
"grad_norm": 0.46318630797414556,
|
693 |
+
"learning_rate": 4.9e-05,
|
694 |
+
"loss": 0.4741,
|
695 |
+
"step": 98
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 0.6197183098591549,
|
699 |
+
"grad_norm": 0.6037444606802089,
|
700 |
+
"learning_rate": 4.9500000000000004e-05,
|
701 |
+
"loss": 0.4754,
|
702 |
+
"step": 99
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 0.6259780907668232,
|
706 |
+
"grad_norm": 0.5037059436389102,
|
707 |
+
"learning_rate": 5e-05,
|
708 |
+
"loss": 0.4739,
|
709 |
+
"step": 100
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 0.6322378716744914,
|
713 |
+
"grad_norm": 0.5631190436137139,
|
714 |
+
"learning_rate": 4.9997404092249336e-05,
|
715 |
+
"loss": 0.4699,
|
716 |
+
"step": 101
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.6384976525821596,
|
720 |
+
"grad_norm": 0.39119483297638863,
|
721 |
+
"learning_rate": 4.998961690809628e-05,
|
722 |
+
"loss": 0.4703,
|
723 |
+
"step": 102
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.6447574334898278,
|
727 |
+
"grad_norm": 0.40196303529424704,
|
728 |
+
"learning_rate": 4.997664006472579e-05,
|
729 |
+
"loss": 0.4749,
|
730 |
+
"step": 103
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 0.651017214397496,
|
734 |
+
"grad_norm": 0.3397733110278162,
|
735 |
+
"learning_rate": 4.9958476257072914e-05,
|
736 |
+
"loss": 0.4654,
|
737 |
+
"step": 104
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 0.6572769953051644,
|
741 |
+
"grad_norm": 0.2670846226151608,
|
742 |
+
"learning_rate": 4.993512925726319e-05,
|
743 |
+
"loss": 0.4716,
|
744 |
+
"step": 105
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 0.6635367762128326,
|
748 |
+
"grad_norm": 0.36681659702689784,
|
749 |
+
"learning_rate": 4.990660391382923e-05,
|
750 |
+
"loss": 0.4704,
|
751 |
+
"step": 106
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 0.6697965571205008,
|
755 |
+
"grad_norm": 0.26058292855009557,
|
756 |
+
"learning_rate": 4.987290615070385e-05,
|
757 |
+
"loss": 0.4647,
|
758 |
+
"step": 107
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 0.676056338028169,
|
762 |
+
"grad_norm": 0.25205128219384887,
|
763 |
+
"learning_rate": 4.983404296598979e-05,
|
764 |
+
"loss": 0.4725,
|
765 |
+
"step": 108
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.6823161189358372,
|
769 |
+
"grad_norm": 0.3208687051782515,
|
770 |
+
"learning_rate": 4.9790022430506463e-05,
|
771 |
+
"loss": 0.471,
|
772 |
+
"step": 109
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 0.6885758998435054,
|
776 |
+
"grad_norm": 0.2306209439140453,
|
777 |
+
"learning_rate": 4.974085368611381e-05,
|
778 |
+
"loss": 0.473,
|
779 |
+
"step": 110
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 0.6948356807511737,
|
783 |
+
"grad_norm": 0.21458192536569118,
|
784 |
+
"learning_rate": 4.968654694381379e-05,
|
785 |
+
"loss": 0.4692,
|
786 |
+
"step": 111
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 0.701095461658842,
|
790 |
+
"grad_norm": 0.24400329234341836,
|
791 |
+
"learning_rate": 4.962711348162987e-05,
|
792 |
+
"loss": 0.4742,
|
793 |
+
"step": 112
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 0.7073552425665102,
|
797 |
+
"grad_norm": 0.5445701250609367,
|
798 |
+
"learning_rate": 4.956256564226487e-05,
|
799 |
+
"loss": 0.4677,
|
800 |
+
"step": 113
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 0.7136150234741784,
|
804 |
+
"grad_norm": 0.2485591152431222,
|
805 |
+
"learning_rate": 4.949291683053769e-05,
|
806 |
+
"loss": 0.478,
|
807 |
+
"step": 114
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.7198748043818466,
|
811 |
+
"grad_norm": 0.2683190648451619,
|
812 |
+
"learning_rate": 4.941818151059956e-05,
|
813 |
+
"loss": 0.468,
|
814 |
+
"step": 115
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 0.7261345852895149,
|
818 |
+
"grad_norm": 0.17377296116604452,
|
819 |
+
"learning_rate": 4.933837520293017e-05,
|
820 |
+
"loss": 0.4682,
|
821 |
+
"step": 116
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 0.7323943661971831,
|
825 |
+
"grad_norm": 0.19892874090328266,
|
826 |
+
"learning_rate": 4.9253514481114535e-05,
|
827 |
+
"loss": 0.4716,
|
828 |
+
"step": 117
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 0.7386541471048513,
|
832 |
+
"grad_norm": 0.22470516800088272,
|
833 |
+
"learning_rate": 4.91636169684011e-05,
|
834 |
+
"loss": 0.4807,
|
835 |
+
"step": 118
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 0.7449139280125195,
|
839 |
+
"grad_norm": 0.23033947133081567,
|
840 |
+
"learning_rate": 4.906870133404187e-05,
|
841 |
+
"loss": 0.4721,
|
842 |
+
"step": 119
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 0.7511737089201878,
|
846 |
+
"grad_norm": 0.2764527709442302,
|
847 |
+
"learning_rate": 4.896878728941531e-05,
|
848 |
+
"loss": 0.4693,
|
849 |
+
"step": 120
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.7574334898278561,
|
853 |
+
"grad_norm": 0.28746556965081915,
|
854 |
+
"learning_rate": 4.8863895583932836e-05,
|
855 |
+
"loss": 0.4767,
|
856 |
+
"step": 121
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 0.7636932707355243,
|
860 |
+
"grad_norm": 0.32061574884194566,
|
861 |
+
"learning_rate": 4.875404800072977e-05,
|
862 |
+
"loss": 0.4643,
|
863 |
+
"step": 122
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 0.7699530516431925,
|
867 |
+
"grad_norm": 0.34181281337669966,
|
868 |
+
"learning_rate": 4.86392673521415e-05,
|
869 |
+
"loss": 0.4602,
|
870 |
+
"step": 123
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"epoch": 0.7762128325508607,
|
874 |
+
"grad_norm": 0.30941984507586506,
|
875 |
+
"learning_rate": 4.8519577474966074e-05,
|
876 |
+
"loss": 0.4711,
|
877 |
+
"step": 124
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 0.7824726134585289,
|
881 |
+
"grad_norm": 0.23600978038755785,
|
882 |
+
"learning_rate": 4.839500322551386e-05,
|
883 |
+
"loss": 0.4696,
|
884 |
+
"step": 125
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 0.7887323943661971,
|
888 |
+
"grad_norm": 0.2577164285099203,
|
889 |
+
"learning_rate": 4.8265570474445636e-05,
|
890 |
+
"loss": 0.4644,
|
891 |
+
"step": 126
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 0.7949921752738655,
|
895 |
+
"grad_norm": 0.27823451721774306,
|
896 |
+
"learning_rate": 4.813130610139994e-05,
|
897 |
+
"loss": 0.479,
|
898 |
+
"step": 127
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 0.8012519561815337,
|
902 |
+
"grad_norm": 0.22061524932206344,
|
903 |
+
"learning_rate": 4.7992237989410904e-05,
|
904 |
+
"loss": 0.4711,
|
905 |
+
"step": 128
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 0.8075117370892019,
|
909 |
+
"grad_norm": 0.20216340578684158,
|
910 |
+
"learning_rate": 4.784839501911771e-05,
|
911 |
+
"loss": 0.468,
|
912 |
+
"step": 129
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"epoch": 0.8137715179968701,
|
916 |
+
"grad_norm": 0.27542745611047786,
|
917 |
+
"learning_rate": 4.7699807062766876e-05,
|
918 |
+
"loss": 0.4754,
|
919 |
+
"step": 130
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 0.8200312989045383,
|
923 |
+
"grad_norm": 0.21954180738847087,
|
924 |
+
"learning_rate": 4.75465049780086e-05,
|
925 |
+
"loss": 0.4595,
|
926 |
+
"step": 131
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 0.8262910798122066,
|
930 |
+
"grad_norm": 0.19430624161738624,
|
931 |
+
"learning_rate": 4.738852060148849e-05,
|
932 |
+
"loss": 0.4747,
|
933 |
+
"step": 132
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 0.8325508607198748,
|
937 |
+
"grad_norm": 0.1884671644058954,
|
938 |
+
"learning_rate": 4.722588674223594e-05,
|
939 |
+
"loss": 0.4748,
|
940 |
+
"step": 133
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 0.838810641627543,
|
944 |
+
"grad_norm": 0.20913369047927102,
|
945 |
+
"learning_rate": 4.7058637174850604e-05,
|
946 |
+
"loss": 0.4653,
|
947 |
+
"step": 134
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 0.8450704225352113,
|
951 |
+
"grad_norm": 0.19564021089464265,
|
952 |
+
"learning_rate": 4.688680663248837e-05,
|
953 |
+
"loss": 0.4644,
|
954 |
+
"step": 135
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 0.8513302034428795,
|
958 |
+
"grad_norm": 0.17437877798570775,
|
959 |
+
"learning_rate": 4.671043079964815e-05,
|
960 |
+
"loss": 0.4666,
|
961 |
+
"step": 136
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 0.8575899843505478,
|
965 |
+
"grad_norm": 0.18658537333186465,
|
966 |
+
"learning_rate": 4.652954630476127e-05,
|
967 |
+
"loss": 0.463,
|
968 |
+
"step": 137
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 0.863849765258216,
|
972 |
+
"grad_norm": 0.1916983418252378,
|
973 |
+
"learning_rate": 4.634419071258472e-05,
|
974 |
+
"loss": 0.4801,
|
975 |
+
"step": 138
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 0.8701095461658842,
|
979 |
+
"grad_norm": 0.18269150591223743,
|
980 |
+
"learning_rate": 4.615440251639995e-05,
|
981 |
+
"loss": 0.465,
|
982 |
+
"step": 139
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"epoch": 0.8763693270735524,
|
986 |
+
"grad_norm": 0.19124021712384207,
|
987 |
+
"learning_rate": 4.5960221130018946e-05,
|
988 |
+
"loss": 0.4624,
|
989 |
+
"step": 140
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 0.8826291079812206,
|
993 |
+
"grad_norm": 0.17751289300487907,
|
994 |
+
"learning_rate": 4.576168687959895e-05,
|
995 |
+
"loss": 0.4667,
|
996 |
+
"step": 141
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 0.8888888888888888,
|
1000 |
+
"grad_norm": 0.16256598664527863,
|
1001 |
+
"learning_rate": 4.555884099526794e-05,
|
1002 |
+
"loss": 0.4724,
|
1003 |
+
"step": 142
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 0.8951486697965572,
|
1007 |
+
"grad_norm": 0.17306660659668968,
|
1008 |
+
"learning_rate": 4.535172560256218e-05,
|
1009 |
+
"loss": 0.4764,
|
1010 |
+
"step": 143
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 0.9014084507042254,
|
1014 |
+
"grad_norm": 0.15311694878287935,
|
1015 |
+
"learning_rate": 4.5140383713677916e-05,
|
1016 |
+
"loss": 0.4633,
|
1017 |
+
"step": 144
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 0.9076682316118936,
|
1021 |
+
"grad_norm": 0.16327033693685952,
|
1022 |
+
"learning_rate": 4.492485921853894e-05,
|
1023 |
+
"loss": 0.4626,
|
1024 |
+
"step": 145
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"epoch": 0.9139280125195618,
|
1028 |
+
"grad_norm": 0.1577015015575217,
|
1029 |
+
"learning_rate": 4.4705196875681854e-05,
|
1030 |
+
"loss": 0.465,
|
1031 |
+
"step": 146
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"epoch": 0.92018779342723,
|
1035 |
+
"grad_norm": 0.14976303947345634,
|
1036 |
+
"learning_rate": 4.448144230296093e-05,
|
1037 |
+
"loss": 0.4732,
|
1038 |
+
"step": 147
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"epoch": 0.9264475743348983,
|
1042 |
+
"grad_norm": 0.1799041852337434,
|
1043 |
+
"learning_rate": 4.425364196807451e-05,
|
1044 |
+
"loss": 0.4638,
|
1045 |
+
"step": 148
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"epoch": 0.9327073552425665,
|
1049 |
+
"grad_norm": 0.25582934784311545,
|
1050 |
+
"learning_rate": 4.402184317891501e-05,
|
1051 |
+
"loss": 0.4687,
|
1052 |
+
"step": 149
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 0.9389671361502347,
|
1056 |
+
"grad_norm": 0.14767269207211267,
|
1057 |
+
"learning_rate": 4.37860940737443e-05,
|
1058 |
+
"loss": 0.4622,
|
1059 |
+
"step": 150
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 0.945226917057903,
|
1063 |
+
"grad_norm": 0.18510146862998086,
|
1064 |
+
"learning_rate": 4.354644361119672e-05,
|
1065 |
+
"loss": 0.4714,
|
1066 |
+
"step": 151
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 0.9514866979655712,
|
1070 |
+
"grad_norm": 0.1834113544053396,
|
1071 |
+
"learning_rate": 4.330294156011172e-05,
|
1072 |
+
"loss": 0.4665,
|
1073 |
+
"step": 152
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"epoch": 0.9577464788732394,
|
1077 |
+
"grad_norm": 0.16106024098596552,
|
1078 |
+
"learning_rate": 4.305563848919824e-05,
|
1079 |
+
"loss": 0.4612,
|
1080 |
+
"step": 153
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"epoch": 0.9640062597809077,
|
1084 |
+
"grad_norm": 0.1582714001537092,
|
1085 |
+
"learning_rate": 4.2804585756532965e-05,
|
1086 |
+
"loss": 0.4656,
|
1087 |
+
"step": 154
|
1088 |
+
},
|
1089 |
+
{
|
1090 |
+
"epoch": 0.9702660406885759,
|
1091 |
+
"grad_norm": 0.1838011411088347,
|
1092 |
+
"learning_rate": 4.254983549889467e-05,
|
1093 |
+
"loss": 0.4585,
|
1094 |
+
"step": 155
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 0.9765258215962441,
|
1098 |
+
"grad_norm": 0.22256207898681857,
|
1099 |
+
"learning_rate": 4.2291440620936796e-05,
|
1100 |
+
"loss": 0.4712,
|
1101 |
+
"step": 156
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 0.9827856025039123,
|
1105 |
+
"grad_norm": 0.16842112143070276,
|
1106 |
+
"learning_rate": 4.2029454784200676e-05,
|
1107 |
+
"loss": 0.4691,
|
1108 |
+
"step": 157
|
1109 |
+
},
|
1110 |
+
{
|
1111 |
+
"epoch": 0.9890453834115805,
|
1112 |
+
"grad_norm": 0.15122887832488566,
|
1113 |
+
"learning_rate": 4.176393239597144e-05,
|
1114 |
+
"loss": 0.4778,
|
1115 |
+
"step": 158
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"epoch": 0.9953051643192489,
|
1119 |
+
"grad_norm": 0.1902639072378955,
|
1120 |
+
"learning_rate": 4.149492859797912e-05,
|
1121 |
+
"loss": 0.4688,
|
1122 |
+
"step": 159
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"epoch": 1.001564945226917,
|
1126 |
+
"grad_norm": 0.17200971150006397,
|
1127 |
+
"learning_rate": 4.122249925494726e-05,
|
1128 |
+
"loss": 0.464,
|
1129 |
+
"step": 160
|
1130 |
+
}
|
1131 |
+
],
|
1132 |
+
"logging_steps": 1,
|
1133 |
+
"max_steps": 318,
|
1134 |
+
"num_input_tokens_seen": 0,
|
1135 |
+
"num_train_epochs": 2,
|
1136 |
+
"save_steps": 16,
|
1137 |
+
"total_flos": 1.0356139229184e+16,
|
1138 |
+
"train_batch_size": 2,
|
1139 |
+
"trial_name": null,
|
1140 |
+
"trial_params": null
|
1141 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6838be8a1bc22ac23837c7b4fd5b41797dd1b59a6f54d379a9faeeae90388906
|
3 |
+
size 7800
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,592 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
215 |
+
elif zero_stage == 3:
|
216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
217 |
+
|
218 |
+
|
219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
221 |
+
return
|
222 |
+
|
223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
225 |
+
|
226 |
+
if debug:
|
227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
229 |
+
|
230 |
+
wanted_params = len(frozen_param_shapes)
|
231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
235 |
+
|
236 |
+
total_params = 0
|
237 |
+
total_numel = 0
|
238 |
+
for name, shape in frozen_param_shapes.items():
|
239 |
+
total_params += 1
|
240 |
+
unpartitioned_numel = shape.numel()
|
241 |
+
total_numel += unpartitioned_numel
|
242 |
+
|
243 |
+
state_dict[name] = frozen_param_fragments[name]
|
244 |
+
|
245 |
+
if debug:
|
246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
247 |
+
|
248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
249 |
+
|
250 |
+
|
251 |
+
def _has_callable(obj, fn):
|
252 |
+
attr = getattr(obj, fn, None)
|
253 |
+
return callable(attr)
|
254 |
+
|
255 |
+
|
256 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
257 |
+
param_shapes = zero_model_states[0].param_shapes
|
258 |
+
|
259 |
+
# Reconstruction protocol:
|
260 |
+
#
|
261 |
+
# XXX: document this
|
262 |
+
|
263 |
+
if debug:
|
264 |
+
for i in range(world_size):
|
265 |
+
for j in range(len(fp32_flat_groups[0])):
|
266 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
267 |
+
|
268 |
+
# XXX: memory usage doubles here (zero2)
|
269 |
+
num_param_groups = len(fp32_flat_groups[0])
|
270 |
+
merged_single_partition_of_fp32_groups = []
|
271 |
+
for i in range(num_param_groups):
|
272 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
273 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
274 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
275 |
+
avail_numel = sum(
|
276 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
277 |
+
|
278 |
+
if debug:
|
279 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
280 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
281 |
+
# not asserting if there is a mismatch due to possible padding
|
282 |
+
print(f"Have {avail_numel} numels to process.")
|
283 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
284 |
+
|
285 |
+
# params
|
286 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
287 |
+
# out-of-core computing solution
|
288 |
+
total_numel = 0
|
289 |
+
total_params = 0
|
290 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
291 |
+
offset = 0
|
292 |
+
avail_numel = full_single_fp32_vector.numel()
|
293 |
+
for name, shape in shapes.items():
|
294 |
+
|
295 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
296 |
+
total_numel += unpartitioned_numel
|
297 |
+
total_params += 1
|
298 |
+
|
299 |
+
if debug:
|
300 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
301 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
302 |
+
offset += unpartitioned_numel
|
303 |
+
|
304 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
305 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
306 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
307 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
308 |
+
align_to = 2 * world_size
|
309 |
+
|
310 |
+
def zero2_align(x):
|
311 |
+
return align_to * math.ceil(x / align_to)
|
312 |
+
|
313 |
+
if debug:
|
314 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
315 |
+
|
316 |
+
offset = zero2_align(offset)
|
317 |
+
avail_numel = zero2_align(avail_numel)
|
318 |
+
|
319 |
+
if debug:
|
320 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
321 |
+
|
322 |
+
# Sanity check
|
323 |
+
if offset != avail_numel:
|
324 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
325 |
+
|
326 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
327 |
+
|
328 |
+
|
329 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
330 |
+
state_dict = OrderedDict()
|
331 |
+
|
332 |
+
# buffers
|
333 |
+
buffers = zero_model_states[0].buffers
|
334 |
+
state_dict.update(buffers)
|
335 |
+
if debug:
|
336 |
+
print(f"added {len(buffers)} buffers")
|
337 |
+
|
338 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
339 |
+
|
340 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
341 |
+
|
342 |
+
# recover shared parameters
|
343 |
+
for pair in zero_model_states[0].shared_params:
|
344 |
+
if pair[1] in state_dict:
|
345 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
346 |
+
|
347 |
+
return state_dict
|
348 |
+
|
349 |
+
|
350 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
351 |
+
remainder = unpartitioned_numel % world_size
|
352 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
353 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
354 |
+
return partitioned_numel, padding_numel
|
355 |
+
|
356 |
+
|
357 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
358 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
359 |
+
return
|
360 |
+
|
361 |
+
if debug:
|
362 |
+
for i in range(world_size):
|
363 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
364 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
365 |
+
|
366 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
367 |
+
wanted_params = len(frozen_param_shapes)
|
368 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
369 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
370 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
371 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
372 |
+
|
373 |
+
total_params = 0
|
374 |
+
total_numel = 0
|
375 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
376 |
+
total_params += 1
|
377 |
+
unpartitioned_numel = shape.numel()
|
378 |
+
total_numel += unpartitioned_numel
|
379 |
+
|
380 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
381 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
382 |
+
|
383 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
384 |
+
|
385 |
+
if debug:
|
386 |
+
print(
|
387 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
388 |
+
)
|
389 |
+
|
390 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
391 |
+
|
392 |
+
|
393 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
394 |
+
param_shapes = zero_model_states[0].param_shapes
|
395 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
396 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
397 |
+
# param, re-consolidating each param, while dealing with padding if any
|
398 |
+
|
399 |
+
# merge list of dicts, preserving order
|
400 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
401 |
+
|
402 |
+
if debug:
|
403 |
+
for i in range(world_size):
|
404 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
405 |
+
|
406 |
+
wanted_params = len(param_shapes)
|
407 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
408 |
+
# not asserting if there is a mismatch due to possible padding
|
409 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
410 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
411 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
412 |
+
|
413 |
+
# params
|
414 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
415 |
+
# out-of-core computing solution
|
416 |
+
offset = 0
|
417 |
+
total_numel = 0
|
418 |
+
total_params = 0
|
419 |
+
for name, shape in param_shapes.items():
|
420 |
+
|
421 |
+
unpartitioned_numel = shape.numel()
|
422 |
+
total_numel += unpartitioned_numel
|
423 |
+
total_params += 1
|
424 |
+
|
425 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
426 |
+
|
427 |
+
if debug:
|
428 |
+
print(
|
429 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
430 |
+
)
|
431 |
+
|
432 |
+
# XXX: memory usage doubles here
|
433 |
+
state_dict[name] = torch.cat(
|
434 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
435 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
436 |
+
offset += partitioned_numel
|
437 |
+
|
438 |
+
offset *= world_size
|
439 |
+
|
440 |
+
# Sanity check
|
441 |
+
if offset != avail_numel:
|
442 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
443 |
+
|
444 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
445 |
+
|
446 |
+
|
447 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
448 |
+
state_dict = OrderedDict()
|
449 |
+
|
450 |
+
# buffers
|
451 |
+
buffers = zero_model_states[0].buffers
|
452 |
+
state_dict.update(buffers)
|
453 |
+
if debug:
|
454 |
+
print(f"added {len(buffers)} buffers")
|
455 |
+
|
456 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
457 |
+
|
458 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
459 |
+
|
460 |
+
# recover shared parameters
|
461 |
+
for pair in zero_model_states[0].shared_params:
|
462 |
+
if pair[1] in state_dict:
|
463 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
464 |
+
|
465 |
+
return state_dict
|
466 |
+
|
467 |
+
|
468 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
469 |
+
"""
|
470 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
471 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
472 |
+
via a model hub.
|
473 |
+
|
474 |
+
Args:
|
475 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
476 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
477 |
+
|
478 |
+
Returns:
|
479 |
+
- pytorch ``state_dict``
|
480 |
+
|
481 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
482 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
483 |
+
the checkpoint.
|
484 |
+
|
485 |
+
A typical usage might be ::
|
486 |
+
|
487 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
488 |
+
# do the training and checkpoint saving
|
489 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
490 |
+
model = model.cpu() # move to cpu
|
491 |
+
model.load_state_dict(state_dict)
|
492 |
+
# submit to model hub or save the model to share with others
|
493 |
+
|
494 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
495 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
496 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
497 |
+
|
498 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
499 |
+
|
500 |
+
"""
|
501 |
+
if tag is None:
|
502 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
503 |
+
if os.path.isfile(latest_path):
|
504 |
+
with open(latest_path, 'r') as fd:
|
505 |
+
tag = fd.read().strip()
|
506 |
+
else:
|
507 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
508 |
+
|
509 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
510 |
+
|
511 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
512 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
513 |
+
|
514 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
515 |
+
|
516 |
+
|
517 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
518 |
+
"""
|
519 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
520 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
521 |
+
|
522 |
+
Args:
|
523 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
524 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
525 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
526 |
+
"""
|
527 |
+
|
528 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
529 |
+
print(f"Saving fp32 state dict to {output_file}")
|
530 |
+
torch.save(state_dict, output_file)
|
531 |
+
|
532 |
+
|
533 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
534 |
+
"""
|
535 |
+
1. Put the provided model to cpu
|
536 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
537 |
+
3. Load it into the provided model
|
538 |
+
|
539 |
+
Args:
|
540 |
+
- ``model``: the model object to update
|
541 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
542 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
543 |
+
|
544 |
+
Returns:
|
545 |
+
- ``model`: modified model
|
546 |
+
|
547 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
548 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
549 |
+
conveniently placed for you in the checkpoint folder.
|
550 |
+
|
551 |
+
A typical usage might be ::
|
552 |
+
|
553 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
554 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
555 |
+
# submit to model hub or save the model to share with others
|
556 |
+
|
557 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
558 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
559 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
560 |
+
|
561 |
+
"""
|
562 |
+
logger.info(f"Extracting fp32 weights")
|
563 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
564 |
+
|
565 |
+
logger.info(f"Overwriting model with fp32 weights")
|
566 |
+
model = model.cpu()
|
567 |
+
model.load_state_dict(state_dict, strict=False)
|
568 |
+
|
569 |
+
return model
|
570 |
+
|
571 |
+
|
572 |
+
if __name__ == "__main__":
|
573 |
+
|
574 |
+
parser = argparse.ArgumentParser()
|
575 |
+
parser.add_argument("checkpoint_dir",
|
576 |
+
type=str,
|
577 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
578 |
+
parser.add_argument(
|
579 |
+
"output_file",
|
580 |
+
type=str,
|
581 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
582 |
+
parser.add_argument("-t",
|
583 |
+
"--tag",
|
584 |
+
type=str,
|
585 |
+
default=None,
|
586 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
587 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
588 |
+
args = parser.parse_args()
|
589 |
+
|
590 |
+
debug = args.debug
|
591 |
+
|
592 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|