Edit model card

Model Trained Using AutoTrain

  • Problem type: Multi-class Classification
  • Model ID: 89087143849
  • CO2 Emissions (in grams): 0.4748

Validation Metrics

  • Loss: 0.542
  • Accuracy: 0.881
  • Macro F1: 0.833
  • Micro F1: 0.881
  • Weighted F1: 0.854
  • Macro Precision: 0.918
  • Micro Precision: 0.881
  • Weighted Precision: 0.901
  • Macro Recall: 0.846
  • Micro Recall: 0.881
  • Weighted Recall: 0.881

Dataset Label

Label intent(category)
11 날씨
12 장소안내
13 전화연결
14 일상대화
15 화물추천
16 검색(FAQ)

Usage

You can use cURL to access this model:

$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/yeye776/autotrain-intent-classification-6categories-distilbert-89087143849

Or Python API:

from transformers import AutoModelForSequenceClassification, AutoTokenizer

model = AutoModelForSequenceClassification.from_pretrained("yeye776/autotrain-intent-classification-6categories-distilbert-89087143849", use_auth_token=True)

tokenizer = AutoTokenizer.from_pretrained("yeye776/autotrain-intent-classification-6categories-distilbert-89087143849", use_auth_token=True)

inputs = tokenizer("I love AutoTrain", return_tensors="pt")

outputs = model(**inputs)
Downloads last month
8
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.