|
--- |
|
license: mit |
|
base_model: microsoft/Phi-3.5-vision-instruct |
|
tags: |
|
- OCR |
|
pipeline_tag: image-text-to-text |
|
library_name: transformers |
|
--- |
|
|
|
# TB-OCR: an end-to-end OCR model handling text, math latex, and markdown formats all at once |
|
|
|
## Model Summary |
|
|
|
TB-OCR-preview (Text Block OCR), created by [Yifei Hu](https://x.com/hu_yifei), is an end-to-end OCR model handling text, math latex, and markdown formats all at once. The model takes a block of text as the input and returns clean markdown output. Headers are marked with `##`. Math expressions are guaranteed to be wrapped in brackets `\( inline math \) \[ display math \]` for easier parsing. This model does not require line-detection or math formula detection. |
|
|
|
**Running the model in 4-bit only requires ~2.8GB VRAM to load and exhibits little to none degradation.** |
|
|
|
## Use Case (Important!) |
|
|
|
**This model is NOT designed to perform OCR on full pages.** Please consider combining **TFT-ID-1.0**[[HF]](https://huggingface.co/yifeihu/TFT-ID-1.0), a text/tale/figure detection model, for full page OCR. It's also faster to split the larger text blocks into smaller ones and perform OCR in parallel (batch inference). |
|
|
|
![image/png](https://huggingface.co/yifeihu/TB-OCR-preview-0.1/resolve/main/tb-ocr-cover.png) |
|
|
|
## Sample Usage |
|
|
|
```python |
|
# check out https://huggingface.co/microsoft/Phi-3.5-vision-instruct for more details |
|
|
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoProcessor, BitsAndBytesConfig |
|
from PIL import Image |
|
import requests |
|
|
|
model_id = "yifeihu/TB-OCR-preview-0.1" |
|
|
|
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
device_map="cuda", |
|
trust_remote_code=True, |
|
torch_dtype="auto", |
|
_attn_implementation='flash_attention_2', |
|
quantization_config=BitsAndBytesConfig(load_in_4bit=True) # Optional: Load model in 4-bit mode to save memory |
|
) |
|
|
|
processor = AutoProcessor.from_pretrained(model_id, |
|
trust_remote_code=True, |
|
num_crops=16 |
|
) |
|
|
|
def phi_ocr(image_url): |
|
question = "Convert the text to markdown format." # this is required |
|
image = Image.open(requests.get(image_url, stream=True).raw) |
|
prompt_message = [{ |
|
'role': 'user', |
|
'content': f'<|image_1|>\n{question}', |
|
}] |
|
|
|
prompt = processor.tokenizer.apply_chat_template(prompt_message, tokenize=False, add_generation_prompt=True) |
|
inputs = processor(prompt, [image], return_tensors="pt").to("cuda") |
|
|
|
generation_args = { |
|
"max_new_tokens": 1024, |
|
"temperature": 0.1, |
|
"do_sample": False |
|
} |
|
|
|
generate_ids = model.generate(**inputs, eos_token_id=processor.tokenizer.eos_token_id, **generation_args |
|
) |
|
|
|
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:] |
|
response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
|
|
response = response.split("<image_end>")[0] # remove the image_end token |
|
|
|
return response |
|
|
|
test_image_url = "https://huggingface.co/yifeihu/TB-OCR-preview-0.1/resolve/main/sample_input_1.png?download=true" |
|
|
|
response = phi_ocr(test_image_url) |
|
|
|
print(response) |
|
``` |
|
|
|
## About this preview checkpoint |
|
|
|
This is a preview model to verify the quality of a dataset from a synthetic data pipeline. The preview checkpoint only used \~250k image-text pairs (\~50M tokens). |
|
|
|
The current model is based on Phi-3.5-vision. Smaller models with even stronger performance are currently being trained or tested. |