metadata
license: apache-2.0
base_model: mistralai/Mistral-7B-Instruct-v0.1
tags:
- generated_from_trainer
model-index:
- name: Mistral-7B-Instruct-v0.1-dpo-full-1-epoch-hydrox-safe
results: []
Mistral-7B-Instruct-v0.1-dpo-full-1-epoch-hydrox-safe
This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.1 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0040
- Rewards/chosen: 0.1378
- Rewards/rejected: -29.0317
- Rewards/accuracies: 0.9983
- Rewards/margins: 29.1695
- Logps/rejected: -714.5497
- Logps/chosen: -254.4278
- Logits/rejected: -3.3257
- Logits/chosen: -3.4722
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
---|---|---|---|---|---|---|---|---|---|---|---|
0.1608 | 0.03 | 100 | 0.1654 | 1.2374 | -2.6089 | 0.9571 | 3.8463 | -450.3222 | -243.4314 | -3.2204 | -3.2045 |
0.1349 | 0.07 | 200 | 0.0961 | 0.9406 | -6.3451 | 0.9756 | 7.2857 | -487.6837 | -246.3994 | -3.1898 | -3.2216 |
0.1065 | 0.1 | 300 | 0.1015 | -0.2203 | -9.2710 | 0.9840 | 9.0507 | -516.9434 | -258.0089 | -3.1999 | -3.2283 |
0.0876 | 0.14 | 400 | 0.0597 | -1.4412 | -13.6992 | 0.9865 | 12.2580 | -561.2250 | -270.2174 | -3.2066 | -3.2753 |
0.304 | 0.17 | 500 | 0.0874 | -0.2677 | -17.2497 | 0.9891 | 16.9821 | -596.7302 | -258.4822 | -3.2093 | -3.2601 |
0.1206 | 0.2 | 600 | 0.0686 | -0.4252 | -15.6514 | 0.9891 | 15.2262 | -580.7473 | -260.0578 | -3.1689 | -3.2024 |
0.0176 | 0.24 | 700 | 0.0630 | -0.7082 | -17.5291 | 0.9933 | 16.8209 | -599.5242 | -262.8876 | -3.2305 | -3.2958 |
0.0461 | 0.27 | 800 | 0.0341 | -1.2542 | -21.2558 | 0.9933 | 20.0016 | -636.7914 | -268.3477 | -3.3936 | -3.5158 |
0.0185 | 0.31 | 900 | 0.0291 | 0.3781 | -17.2475 | 0.9966 | 17.6256 | -596.7079 | -252.0242 | -3.3745 | -3.4941 |
0.0219 | 0.34 | 1000 | 0.0248 | -0.1014 | -19.6177 | 0.9958 | 19.5163 | -620.4097 | -256.8191 | -3.3236 | -3.4703 |
0.0193 | 0.37 | 1100 | 0.0476 | 0.2441 | -22.8685 | 0.9949 | 23.1126 | -652.9178 | -253.3648 | -3.3700 | -3.5127 |
0.0153 | 0.41 | 1200 | 0.0344 | 0.2337 | -21.0722 | 0.9958 | 21.3059 | -634.9553 | -253.4690 | -3.3281 | -3.4433 |
0.1011 | 0.44 | 1300 | 0.0320 | 0.3865 | -19.5099 | 0.9941 | 19.8964 | -619.3322 | -251.9406 | -3.2086 | -3.2943 |
0.0085 | 0.48 | 1400 | 0.0164 | -0.3604 | -24.6053 | 0.9958 | 24.2449 | -670.2856 | -259.4097 | -3.3688 | -3.5055 |
0.0057 | 0.51 | 1500 | 0.0115 | -0.8584 | -33.7853 | 0.9966 | 32.9269 | -762.0861 | -264.3898 | -3.2986 | -3.4455 |
0.0082 | 0.54 | 1600 | 0.0525 | -0.3661 | -22.4426 | 0.9975 | 22.0765 | -648.6592 | -259.4668 | -3.3372 | -3.4816 |
0.0128 | 0.58 | 1700 | 0.0514 | -0.4253 | -24.3063 | 0.9958 | 23.8810 | -667.2958 | -260.0584 | -3.3102 | -3.4488 |
0.0018 | 0.61 | 1800 | 0.0356 | -0.3563 | -24.1492 | 0.9966 | 23.7929 | -665.7247 | -259.3687 | -3.2894 | -3.4159 |
0.0105 | 0.65 | 1900 | 0.0381 | -0.9566 | -33.8957 | 0.9958 | 32.9391 | -763.1902 | -265.3718 | -3.3840 | -3.5348 |
0.006 | 0.68 | 2000 | 0.0072 | -0.1403 | -26.2483 | 0.9975 | 26.1080 | -686.7160 | -257.2083 | -3.3371 | -3.4805 |
0.0026 | 0.71 | 2100 | 0.0102 | -0.1870 | -29.0470 | 0.9966 | 28.8600 | -714.7033 | -257.6760 | -3.3557 | -3.4974 |
0.0038 | 0.75 | 2200 | 0.0078 | -0.4803 | -29.8773 | 0.9966 | 29.3970 | -723.0064 | -260.6087 | -3.3551 | -3.5046 |
0.0011 | 0.78 | 2300 | 0.0075 | -0.4771 | -28.4348 | 0.9966 | 27.9577 | -708.5814 | -260.5770 | -3.3459 | -3.4948 |
0.0033 | 0.82 | 2400 | 0.0047 | -0.1998 | -28.0030 | 0.9983 | 27.8032 | -704.2631 | -257.8039 | -3.3489 | -3.4950 |
0.0051 | 0.85 | 2500 | 0.0048 | -0.2771 | -29.2358 | 0.9992 | 28.9587 | -716.5906 | -258.5765 | -3.3025 | -3.4428 |
0.0074 | 0.88 | 2600 | 0.0044 | -0.2089 | -29.6486 | 0.9975 | 29.4396 | -720.7189 | -257.8950 | -3.3320 | -3.4805 |
0.0032 | 0.92 | 2700 | 0.0041 | -0.1675 | -30.1791 | 0.9975 | 30.0116 | -726.0242 | -257.4810 | -3.3308 | -3.4822 |
0.0023 | 0.95 | 2800 | 0.0038 | 0.0604 | -29.3907 | 0.9983 | 29.4511 | -718.1400 | -255.2013 | -3.3267 | -3.4751 |
0.003 | 0.99 | 2900 | 0.0040 | 0.1446 | -28.9793 | 0.9983 | 29.1239 | -714.0264 | -254.3596 | -3.3257 | -3.4723 |
Framework versions
- Transformers 4.35.0
- Pytorch 2.1.1+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1