yinani24/my_distilbert_ft_model_2
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.7662
- Validation Loss: 0.7765
- Train Accuracy: 0.6875
- Epoch: 3
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 0.0001, 'decay_steps': 25, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Validation Loss | Train Accuracy | Epoch |
---|---|---|---|
1.0922 | 1.0961 | 0.5 | 0 |
1.0921 | 1.0474 | 0.6875 | 1 |
0.9923 | 0.8858 | 0.75 | 2 |
0.7662 | 0.7765 | 0.6875 | 3 |
Framework versions
- Transformers 4.37.2
- TensorFlow 2.15.0
- Datasets 2.17.1
- Tokenizers 0.15.2
- Downloads last month
- 2
Inference API (serverless) does not yet support transformers models for this pipeline type.
Model tree for yinani24/my_distilbert_ft_model_2
Base model
distilbert/distilbert-base-uncased