SentenceTransformer based on ymelka/camembert-cosmetic-finetuned

This is a sentence-transformers model finetuned from ymelka/camembert-cosmetic-finetuned on the PhilipMay/stsb_multi_mt dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: CamembertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("ymelka/camembert-cosmetic-similarity")
# Run inference
sentences = [
    'Un homme joue de la guitare.',
    'Un homme est en train de manger une banane.',
    'Un homme joue de la flûte.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.6401
spearman_cosine 0.6662
pearson_manhattan 0.7077
spearman_manhattan 0.7104
pearson_euclidean 0.6183
spearman_euclidean 0.6339
pearson_dot 0.1861
spearman_dot 0.2168
pearson_max 0.7077
spearman_max 0.7104

Semantic Similarity

Metric Value
pearson_cosine 0.8344
spearman_cosine 0.8565
pearson_manhattan 0.8519
spearman_manhattan 0.8542
pearson_euclidean 0.8541
spearman_euclidean 0.8555
pearson_dot 0.499
spearman_dot 0.5094
pearson_max 0.8541
spearman_max 0.8565

Semantic Similarity

Metric Value
pearson_cosine 0.798
spearman_cosine 0.8219
pearson_manhattan 0.8238
spearman_manhattan 0.8221
pearson_euclidean 0.823
spearman_euclidean 0.8218
pearson_dot 0.4089
spearman_dot 0.4589
pearson_max 0.8238
spearman_max 0.8221

Training Details

Training Dataset

PhilipMay/stsb_multi_mt

  • Dataset: PhilipMay/stsb_multi_mt at 3acaa3d
  • Size: 5,749 training samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 6 tokens
    • mean: 11.1 tokens
    • max: 30 tokens
    • min: 6 tokens
    • mean: 11.04 tokens
    • max: 26 tokens
    • min: 0.0
    • mean: 2.7
    • max: 5.0
  • Samples:
    sentence1 sentence2 score
    Un avion est en train de décoller. Un avion est en train de décoller. 5.0
    Un homme joue d'une grande flûte. Un homme joue de la flûte. 3.799999952316284
    Un homme étale du fromage râpé sur une pizza. Un homme étale du fromage râpé sur une pizza non cuite. 3.799999952316284
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    

Evaluation Dataset

PhilipMay/stsb_multi_mt

  • Dataset: PhilipMay/stsb_multi_mt at 3acaa3d
  • Size: 1,500 evaluation samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 6 tokens
    • mean: 17.45 tokens
    • max: 52 tokens
    • min: 6 tokens
    • mean: 17.35 tokens
    • max: 48 tokens
    • min: 0.0
    • mean: 2.36
    • max: 5.0
  • Samples:
    sentence1 sentence2 score
    Un homme avec un casque de sécurité est en train de danser. Un homme portant un casque de sécurité est en train de danser. 5.0
    Un jeune enfant monte à cheval. Un enfant monte à cheval. 4.75
    Un homme donne une souris à un serpent. L'homme donne une souris au serpent. 5.0
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • learning_rate: 2e-05
  • weight_decay: 0.01
  • warmup_ratio: 0.1
  • bf16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.01
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 3
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss loss stsb-fr-dev_spearman_cosine stsb-fr-test_spearman_cosine
0 0 - - 0.6661 -
0.2778 100 4.9452 4.4417 0.7733 -
0.5556 200 4.667 4.4273 0.7986 -
0.8333 300 4.4904 4.3058 0.8338 -
1.1111 400 4.1679 4.2723 0.8491 -
1.3889 500 4.138 4.3575 0.8464 -
1.6667 600 4.5737 4.3427 0.8479 -
1.9444 700 4.3086 4.4455 0.8510 -
2.2222 800 3.8711 4.4135 0.8590 -
2.5 900 4.064 4.4775 0.8567 -
2.7778 1000 4.2255 4.4733 0.8565 -
3.0 1080 - - - 0.8219

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.3.0+cu121
  • Accelerate: 0.31.0
  • Datasets: 2.19.2
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

CoSENTLoss

@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}
Downloads last month
23
Safetensors
Model size
111M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ymelka/camembert-cosmetic-similarity

Finetuned
(3)
this model

Dataset used to train ymelka/camembert-cosmetic-similarity

Evaluation results