ymoslem's picture
Update README.md
9f0b510 verified
metadata
language:
  - ga
  - en
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - ymoslem/IWSLT2023-GA-EN
  - ymoslem/FLEURS-GA-EN
  - ymoslem/BitesizeIrish-GA-EN
  - ymoslem/SpokenWords-GA-EN-MTed
metrics:
  - bleu
  - wer
model-index:
  - name: Whisper Medium GA-EN Speech Translation
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, and Wikimedia
          type: ymoslem/IWSLT2023-GA-EN
        metrics:
          - name: Bleu
            type: bleu
            value: 32.14
          - name: Wer
            type: wer
            value: 65.96127870328681

Whisper Medium GA-EN Speech Translation

This model is a fine-tuned version of openai/whisper-medium on the IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, and Wikimedia dataset. The best model checkpoint (this version) is at step 1400, epoch 1.84 (4 x 0.46), and it achieves the following results on the evaluation set:

  • Loss: 1.0240
  • Bleu: 33.55
  • Chrf: 50.95
  • Wer: 60.1981

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 0.03
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Hardware

4 x A40 48GB VRAM, with batch size 4 per machine (total: 16)

Training results

Training Loss Epoch Step Bleu Chrf Validation Loss Wer
2.9468 0.03 100 4.72 20.55 2.2829 120.6213
2.5074 0.07 200 7.81 25.23 2.0136 114.8131
2.2406 0.1 300 11.24 29.39 1.8224 95.9928
2.2466 0.13 400 16.01 34.73 1.6530 83.4309
2.0276 0.16 500 16.69 34.76 1.5344 94.2368
1.8429 0.2 600 21.37 37.48 1.4923 78.5682
1.7621 0.23 700 23.4 40.89 1.3666 74.3359
1.5629 0.26 800 24.76 44.63 1.2876 76.6321
1.5458 0.3 900 25.81 44.59 1.2178 72.6249
1.2971 0.33 1000 27.63 46.91 1.1823 70.2837
1.3852 0.36 1100 27.18 46.16 1.2303 70.6889
1.309 0.39 1200 27.65 47.41 1.1573 72.0396
1.1818 0.43 1300 31.17 48.36 1.1304 61.6389
1.2711 0.46 1400 33.55 50.95 1.0839 60.1981
1.1305 0.49 1500 30.37 50.78 1.0718 68.6628
1.0544 0.53 1600 26.98 48.1 1.1109 73.7506
1.125 0.56 1700 30.76 50.19 1.0709 61.7740
1.1348 0.59 1800 33.71 50.6 1.0530 59.9280
1.14 0.62 1900 31.45 50.16 1.0392 66.9068
1.1059 0.66 2000 32.14 50.84 1.0240 65.9613

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.0.1+cu118
  • Datasets 2.18.0
  • Tokenizers 0.15.2