yoshitomo-matsubara's picture
Update README.md
8f75065
|
raw
history blame
1.45 kB
---
language: en
tags:
- bert
- mnli
- ax
- glue
- torchdistill
license: apache-2.0
datasets:
- mnli
- ax
metrics:
- accuracy
---
`bert-base-uncased` fine-tuned on MNLI dataset, using [***torchdistill***](https://github.com/yoshitomo-matsubara/torchdistill) and [Google Colab](https://colab.research.google.com/github/yoshitomo-matsubara/torchdistill/blob/master/demo/glue_finetuning_and_submission.ipynb).
The hyperparameters are the same as those in Hugging Face's example and/or the paper of BERT, and the training configuration (including hyperparameters) is available [here](https://github.com/yoshitomo-matsubara/torchdistill/blob/main/configs/sample/glue/mnli/ce/bert_base_uncased.yaml).
I submitted prediction files to [the GLUE leaderboard](https://gluebenchmark.com/leaderboard), and the overall GLUE score was **77.9**.
Yoshitomo Matsubara: **"torchdistill Meets Hugging Face Libraries for Reproducible, Coding-Free Deep Learning Studies: A Case Study on NLP"** at *EMNLP 2023 Workshop for Natural Language Processing Open Source Software (NLP-OSS)*
[[OpenReview](https://openreview.net/forum?id=A5Axeeu1Bo)] [[Preprint](https://arxiv.org/abs/2310.17644)]
```bibtex
@article{matsubara2023torchdistill,
title={{torchdistill Meets Hugging Face Libraries for Reproducible, Coding-Free Deep Learning Studies: A Case Study on NLP}},
author={Matsubara, Yoshitomo},
journal={arXiv preprint arXiv:2310.17644},
year={2023}
}
```