yoshitomo-matsubara's picture
Update README.md
948241a
|
raw
history blame
1.45 kB
metadata
language: en
tags:
  - bert
  - mnli
  - ax
  - glue
  - torchdistill
license: apache-2.0
datasets:
  - mnli
  - ax
metrics:
  - accuracy

bert-large-uncased fine-tuned on MNLI dataset, using torchdistill and Google Colab.
The hyperparameters are the same as those in Hugging Face's example and/or the paper of BERT, and the training configuration (including hyperparameters) is available here.
I submitted prediction files to the GLUE leaderboard, and the overall GLUE score was 80.2.

Yoshitomo Matsubara: "torchdistill Meets Hugging Face Libraries for Reproducible, Coding-Free Deep Learning Studies: A Case Study on NLP" at EMNLP 2023 Workshop for Natural Language Processing Open Source Software (NLP-OSS)

[OpenReview] [Preprint]

@article{matsubara2023torchdistill,
  title={{torchdistill Meets Hugging Face Libraries for Reproducible, Coding-Free Deep Learning Studies: A Case Study on NLP}},
  author={Matsubara, Yoshitomo},
  journal={arXiv preprint arXiv:2310.17644},
  year={2023}
}