metadata
base_model: sentence-transformers/all-MiniLM-L6-v2
language:
- en
library_name: sentence-transformers
license: apache-2.0
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1830648
- loss:AnglELoss
widget:
- source_sentence: crunchy chips
sentences:
- big chips spiced gouda
- purse
- macaroni
- source_sentence: genuine leather luggage
sentences:
- janatte luggage
- bomb chemise
- purse
- source_sentence: head covers Rashguard
sentences:
- Double Shaded Blue Clutch
- Rashguard
- bathing costume
- source_sentence: hand Made Sweatpants
sentences:
- acid cleanser
- reflective weave sweatpants
- rashguard
- source_sentence: siamy wrap
sentences:
- siamy
- hair revival
- backpack
all-MiniLM-L6-v5-pair_score
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'siamy wrap',
'siamy',
'hair revival',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 128per_device_eval_batch_size
: 128learning_rate
: 2e-05num_train_epochs
: 2warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 128per_device_eval_batch_size
: 128per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss |
---|---|---|
0.0070 | 100 | 16.865 |
0.0140 | 200 | 16.1556 |
0.0210 | 300 | 14.8008 |
0.0280 | 400 | 12.4025 |
0.0350 | 500 | 9.7465 |
0.0420 | 600 | 8.448 |
0.0489 | 700 | 8.1951 |
0.0559 | 800 | 8.1093 |
0.0629 | 900 | 8.0567 |
0.0699 | 1000 | 8.0401 |
0.0769 | 1100 | 7.9491 |
0.0839 | 1200 | 7.9494 |
0.0909 | 1300 | 7.9386 |
0.0979 | 1400 | 7.9033 |
0.1049 | 1500 | 7.9055 |
0.1119 | 1600 | 7.9203 |
0.1189 | 1700 | 7.8381 |
0.1259 | 1800 | 7.8679 |
0.1328 | 1900 | 7.8686 |
0.1398 | 2000 | 7.8252 |
0.1468 | 2100 | 7.856 |
0.1538 | 2200 | 7.8301 |
0.1608 | 2300 | 7.8595 |
0.1678 | 2400 | 7.8138 |
0.1748 | 2500 | 7.812 |
0.1818 | 2600 | 7.8261 |
0.1888 | 2700 | 7.7988 |
0.1958 | 2800 | 7.7965 |
0.2028 | 2900 | 7.783 |
0.2098 | 3000 | 7.7752 |
0.2168 | 3100 | 7.7715 |
0.2237 | 3200 | 7.7903 |
0.2307 | 3300 | 7.7656 |
0.2377 | 3400 | 7.749 |
0.2447 | 3500 | 7.7662 |
0.2517 | 3600 | 7.7492 |
0.2587 | 3700 | 7.737 |
0.2657 | 3800 | 7.7232 |
0.2727 | 3900 | 7.7616 |
0.2797 | 4000 | 7.7391 |
0.2867 | 4100 | 7.7552 |
0.2937 | 4200 | 7.7273 |
0.3007 | 4300 | 7.7216 |
0.3076 | 4400 | 7.7371 |
0.3146 | 4500 | 7.7426 |
Framework Versions
- Python: 3.8.10
- Sentence Transformers: 3.1.1
- Transformers: 4.45.2
- PyTorch: 2.4.1+cu118
- Accelerate: 1.0.1
- Datasets: 3.0.1
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
AnglELoss
@misc{li2023angleoptimized,
title={AnglE-optimized Text Embeddings},
author={Xianming Li and Jing Li},
year={2023},
eprint={2309.12871},
archivePrefix={arXiv},
primaryClass={cs.CL}
}